Slide51.JPG

Slide52.JPG
Slide53.JPG
Slide54.JPG
Slide55.JPG Slide56.JPG

Go Ad-free

Transcript

Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (i) (A’)’ = A, A = [■8(3&√3&2@4&2&0)] A’ = [■8(3&√3&2@4&2&0)]^′= [■8(𝟑&𝟒@√𝟑&𝟐@𝟐&𝟎)] (A’)’ = [■8(3&4@√3&2@2&0)]^′= [■8(3&√3&2@4&2&0)] = A Thus (A’)’ = A Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] Verify that (ii) (A + B)’ = A’ + B’, Solving L.H.S First finding (A + B) (A + B) = [■8(3&√3&2@4&2&0)] + [■8(2&−1&2@1&2&4)] = [■8(3+2 &√3+(−1)&2+2@4+1&2+2&0+4)] = [■8(5&√3−1&4@5&4&4)] Thus, (A + B)’ = [■8(𝟓&𝟓@√𝟑−𝟏&𝟒@𝟒&𝟒)] Solving R.H.S A’ + B’ Finding A’ A = [■8(3&√3&2@4&2&0)] A’ = [■8(𝟑&𝟒@√𝟑&𝟐@𝟐&𝟎)] Also, B = [■8(2&−1&2@1&2&4)] B‘ = [■8(𝟐&𝟏@−𝟏&𝟐@𝟐&𝟒)] Now, A’ + B’ =[■8(3&4@√3&2@2&0)] +[■8(2&1@−1&2@2&4)] = [■8(3+2&4+1@√3+(−1)&2+2@2+0&0+4)] = [■8(𝟓&𝟓@√𝟑−𝟏&𝟒@𝟒&𝟒)] = L.H.S Since L.H.S = R.H.S Hence Proved Example 20 If A = [■8(3&√3&2@4&2&0)] and B = [■8(2&−1&2@1&2&4)] .Verify that (iii) (kB)’ = kB’, where k is any constant. Solving L.H.S (kB)’ Finding kB first kB = k [■8(2&−1&2@1&2&4)] = [■8(2𝑘&−𝑘&2𝑘@𝑘&2𝑘&4𝑘)] (kB)’ = [■8(𝟐𝒌&𝒌@−𝒌&𝟐𝒌@𝟐𝒌&𝟒𝒌)] Solving R.H.S kB’ Finding B’ first B = [■8(2&−1&2@1&2&4)] B’ = [■8(𝟐&𝟏@−𝟏&𝟐@𝟐&𝟒)] kB’ = k[■8(2&1@−1&2@2&4)] = [■8(2𝑘&𝑘@−𝑘&2𝑘@2𝑘&4𝑘)] = L.H.S Since L.H.S = R.H.S Hence Proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo