Ex 3.3, 12 (MCQ) - Chapter 3 Class 12 Matrices
Last updated at April 16, 2024 by Teachoo
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 (i)
Ex 3.3, 5 (ii)
Ex 3.3, 6 (i)
Ex 3.3, 6 (ii) Important
Ex 3.3, 7 (i)
Ex 3.3, 7 (ii) Important
Ex 3.3, 8
Ex 3.3, 9
Ex 3.3, 10 (i) Important
Ex 3.3, 10 (ii)
Ex 3.3, 10 (iii) Important
Ex 3.3, 10 (iv)
Ex 3.3, 11 (MCQ) Important
Ex 3.3, 12 (MCQ) You are here
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 12 If A = [β 8(cos πΌ&γβsinγβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] , then A + Aβ = I , if the value of Ξ± is A. π/π B. π/π C. Ο D. ππ/π A = [β 8(cosβ‘πΌ&γβsinγβ‘πΌ@sinβ‘πΌ&cosβ‘πΌ )] Aβ= [β 8(cosβ‘πΌ&sinβ‘πΌ@γβsinγβ‘πΌ&cosβ‘πΌ )] and I = [β 8(1&0@0&1)] Given A + Aβ = I [β 8(ππ¨π¬β‘πΆ&γβπ¬π’π§γβ‘πΆ@π¬π’π§β‘πΆ&ππ¨π¬β‘πΆ )] + [β 8(ππ¨π¬β‘πΆ&π¬π’π§β‘πΆ@γβπ¬π’π§γβ‘πΆ&ππ¨π¬β‘πΆ )] = [β 8(π&π@π&π)] [β 8(cosβ‘γπΌ+cosβ‘πΌ γ&γβsinγβ‘γπΌ+sinβ‘πΌ γ@sinβ‘πΌ γβsinγβ‘πΌ&cosβ‘γπΌ+cosβ‘πΌ γ )]= [β 8(1&0@0&1)] [β 8(πππ¨π¬β‘πΆ&π@π&πππ¨π¬β‘πΆ )]= [β 8(π&π@π&π)] Since the matrices are equal, corresponding elements are equal 2cos πΆ = 1 cosβ‘πΌ = 1/2 cosβ‘πΌ = cosβ‘γ60Β°γ Comparing angles πΌ = 60Β° πΌ = 60Β° Γ π/(180Β°) πΆ = π /π So the correct answer is (B)