Slide25.JPG

Slide26.JPG

 

 

Go Ad-free

Transcript

Ex 3.3, 6 If (i) A = [■8(cos⁡𝛼&sin⁡𝛼@−sin⁡𝛼&cos⁡𝛼 )] , then verify that A’A = I Solving L.H.S. A’A Given A = [■8(cos⁡𝛼&sin⁡𝛼@−sin⁡𝛼&cos⁡𝛼 )] So, A’ = [■8(𝐜𝐨𝐬⁡𝜶&−𝐬𝐢𝐧⁡𝜶@𝐬𝐢𝐧⁡𝜶&𝐜𝐨𝐬⁡𝜶 )] A’ A = [■8(cos⁡𝛼&〖−sin〗⁡𝛼@sin⁡𝛼&cos⁡𝛼 )] [■8(cos⁡𝛼&sin⁡𝛼@−sin⁡𝛼&cos⁡𝛼 )] = [■8(cos⁡𝛼.cos⁡𝛼+〖(−sin〗⁡〖𝛼)〖(−sin〗⁡〖𝛼)〗 〗&cos⁡𝛼 〖.sin〗⁡𝛼+〖(−sin〗⁡〖𝛼)cos⁡𝛼 〗@sin⁡𝛼. cos⁡𝛼+cos⁡〖𝛼 〖(−sin〗⁡〖𝛼)〗 〗&sin⁡𝛼.sin⁡𝛼+cos⁡〖𝛼 .cos⁡𝛼 〗 )] = [■8(cos2⁡𝛼+sin2𝛼&sin⁡〖𝛼 cos⁡〖𝛼−sin⁡〖𝛼 cos⁡𝛼 〗 〗 〗@sin⁡𝛼 cos⁡〖𝛼−sin⁡𝛼 〗 cos𝛼&sin2⁡𝛼+cos2 a)] = [■8(𝐜𝐨𝐬𝟐⁡𝜶+𝐬𝐢𝐧𝟐 𝜶&𝟎@𝟎&𝐬𝐢𝐧𝟐⁡𝜶+𝐜𝐨𝐬𝟐 𝒂)] Using sin2 θ + cos2 θ = 1 = [■8(1&0@0&1)] = I = R.H.S Hence L.H.S = R.H.S Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo