Ex 3.2
Ex 3.2, 2 (i)
Ex 3.2, 2 (ii) Important
Ex 3.2, 2 (iii)
Ex 3.2, 2 (iv)
Ex 3.2, 3 (i)
Ex 3.2, 3 (ii) Important
Ex 3.2, 3 (iii)
Ex 3.2, 3 (iv) Important
Ex 3.2, 3 (v)
Ex 3.2, 3 (vi) Important
Ex 3.2, 4
Ex 3.2, 5
Ex 3.2, 6
Ex 3.2, 7 (i)
Ex 3.2, 7 (ii) Important
Ex 3.2, 8
Ex 3.2, 9
Ex 3.2, 10
Ex 3.2, 11
Ex 3.2, 12 Important
Ex 3.2, 13 Important
Ex 3.2, 14 You are here
Ex 3.2, 15
Ex 3.2, 16 Important
Ex 3.2, 17 Important
Ex 3.2, 18
Ex 3.2, 19 Important
Ex 3.2, 20 Important
Ex 3.2, 21 (MCQ) Important
Ex 3.2, 22 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 3.2, 14 Show that (i) [■8(5&−1@6&7)] [■8(2&1@3&4)] ≠ [■8(2&1@3&4)] [■8(5&−1@6&7)] Solving L.H.S [■8(5&−1@6&7)]_(2 × 2) [■8(2&1@3&4)]_(2 × 2) = [■8(5 × 2+(−1) × 3&5 × 1+(−1)× 4@6 × 2+7 × 3&6 × 1+7 × 4)]_(2 × 2) = [■8(10−3&5−4@12+21&6+28) ] = [■8(𝟕&𝟏@𝟑𝟑&𝟑𝟒)] Solving R.H.S [■8(2&1@3&4)]_(2 × 2) [■8(5&−1@6&7)]_(2 × 2) = [■8(2 × 5+1 × 6&2 × (−1)+1 × 7@3 × 5+4 × 6&3 × (−1)+4 × 7)]_(2 × 2) = [■8(10+6&−2+7@15+24&−3+28)] = [■8(𝟏𝟔&𝟓@𝟑𝟗&𝟐𝟓)] ≠ L.H.S Thus, L.H.S. ≠ R.H.S. Hence proved. Ex 3.2, 14 Show that (ii) [■8(1&2&3@0&1&0@1&1&0)][■8(−1&1&0@0&−1&1@2&3&4)] ≠[■8(−1&1&0@0&−1&1@2&3&4)][■8(1&2&3@0&1&0@1&1&0)] Solving L.H.S. [■8(1&2&3@0&1&0@1&1&0)]_(3 × 3) [■8(−1&1&0@0&−1&1@2&3&4)]_(3 × 3) = [■8(1×(⤶7−1)+2×0+3×2&1×1+2×(−1)+3×3&1×0+2×1+3×4@0×(⤶7−1)+1×0+0×2&0×1+1×(⤶7−1)+0×3&0×0+1×1+0×4@1×(⤶7−1)+1×0+0×2&1×1+1×(⤶7−1)+0×3&1×0+1×1+0×4)]_(3×3) = [■8(−1+0+6&1−2+9&0+2+12@0+0+0&0−1+0&0+1+0@−1+0+0&1−1+0&0+1+0)] = [■8(𝟓&𝟖&𝟏𝟒@𝟎&−𝟏&𝟏@−𝟏&𝟎&𝟏)] Solving R.H.S [■8(−1&1&0@0&−1&1@2&3&4)]_(3 × 3) [■8(1&2&3@0&1&0@1&1&0)]_(3 × 3) = [■8(−1×1+1×0+0×1&−1×2+1×1+0×1&−1×3+1×0+0×0@0×1+(−1)×0+1×1&0×2+(⤶7−1)×1+1×1&0×3+(−1)×0+1×0@2×1+(3)×0+4×1&2×2+3×1+4×1&2×3+(3)×0+4×0)]_(3×3) = [■8(−1+0+0&−2+1+0&−3+0+0@0+0+1&0−1+1&0+0+0@2+0+4&4+3+4&6+0+0)] = [■8(−𝟏&−𝟏&−𝟑@𝟏&𝟎&𝟎@𝟔&𝟏𝟏&𝟔)] ≠ L.H.S ∴ L.H.S. ≠ R.H.S Hence proved