Slide43.JPG

Slide44.JPG
Slide45.JPG
Slide46.JPG

Go Ad-free

Transcript

Misc 13 sin(tanβˆ’1 x), |π‘₯| < 1 is equal to (A) π‘₯/√(1 βˆ’ π‘₯2) (B) 1/√(1 βˆ’ π‘₯2) (C) 1/√(1 + π‘₯2) (D) π‘₯/√(1 + π‘₯2) Let a = tanβˆ’1 x tan a = x We need to find sin a. For this first we calculate sec a and cos a We know that sec2 a = 1 + tan2 a sec a = √(1+π‘‘π‘Žπ‘›2 a) sec a = √(1+π‘₯2) 1/cosβ‘π‘Ž = √(1+π‘₯2) 1/√(1 + π‘₯^2 ) = cosβ‘π‘Ž 𝒄𝒐𝒔⁑𝒂 = 𝟏/√(𝟏 + 𝒙^𝟐 ) We know that sin a = √("1 – cos2 a" ) sin a = √("1 –" (1/√(1 + π‘₯^2 ))^2 ) sin a = √("1 –" 1/(1 + π‘₯2)) sin a = √((1 + π‘₯2 βˆ’ 1)/(1 + π‘₯2)) = √((π‘₯2 )/(1 + π‘₯2)) = √(π‘₯^2 )/√(γ€–1 + π‘₯γ€—^2 ) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) sin a = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) a = sinβˆ’1 (π‘₯/√(γ€–1 + π‘₯γ€—^2 )) Now solving sin(tanβˆ’1 x) = sin (a) = sin ("sinβˆ’1 " (𝒙/√(γ€–πŸ + 𝒙〗^𝟐 ))) = π‘₯/√(γ€–1 + π‘₯γ€—^2 ) Hence, D is the correct answer

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo