Slide39.JPG

Slide40.JPG
Slide41.JPG
Slide42.JPG

Go Ad-free

Transcript

Misc 12 Solve tan-1 (1 − x)/(1 + x) = 1/2 tan-1 x, (x > 0) tan-1 (1 − x)/(1 + x) = 1/2 tan-1 x 2 tan-1 ((1 − x)/(1 + x)) = tan-1 x tan-1 [(2 ((1 − 𝑥)/(1 + 𝑥)))/(1 − ((1 − 𝑥)/(1 + 𝑥 ))^2 )] = tan-1 x We know that 2 tan-1 x = tan-1 ((𝟐𝒙 )/(𝟏 − 𝐱^𝟐 )) Replacing x by (1 − 𝑥)/(1 + 𝑥) tan-1 [((2 (1 − 𝑥))/((1 + 𝑥)))/(((1 + 𝑥)2 − ( 1 −𝑥 )2)/(1 + 𝑥 )^2 )] = tan-1 x tan-1 [(2 (1 − 𝑥))/((1 + 𝑥)) × ((1 + 𝑥))/((1 + 𝑥)2 − (1 − 𝑥)2)] = tan-1 x tan-1 [(2 (1 − 𝑥) (1 + 𝑥))/((1 + 𝑥)2 − (1 − 𝑥)2)] = tan-1 x Using (a + b) (a – b) = a2 – b2 tan-1 [ (2 (1 − 𝑥2) )/((1 + 𝑥 + 1 − 𝑥) (1+ 𝑥 − 1 + 𝑥) )] = tan-1 x tan-1 [ (2 (1 − 𝑥2) )/((1 +1 − 𝑥 − 𝑥) (𝑥 + 𝑥 − 1 + 1) )] = tan-1 x tan-1 [(2 (1 − 𝑥2))/(4 (1) (𝑥) )] = tan-1 x tan-1 [(1 − 𝑥2)/2𝑥] = tan-1 x Comparing values (1 − 𝑥2)/2𝑥 = x 1 – x2 = 2x2 1 – x2 – 2x2 = 0 1 – 3x2 = 0 3x2 = 1 x2 = 1/3 x = ± 1/√3 x = (− 1 )/√3 is not possible because it is Given that x > 0 Hence, x = ( 𝟏 )/√𝟑

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo