Slide32.JPG

Slide33.JPG
Slide34.JPG
Slide35.JPG

Go Ad-free

Transcript

Misc 10 Prove tan−1 ((√(1 + x) − √(1 − x))/(√(1 + x) + √(1 − x))) = π/4 − 1/2 cos-1 x, −1/√2 ≤ x ≤ 1 [Hint: Put x = cos 2θ] Solving L.H.S. tan−1 ((√(1 + x) − √(1 − x))/(√(1 + x) + √(1 − x))) Putting x = cos 2𝜽 = tan−1 ((√(1 + cos 2θ) − √(1 − cos 2θ))/(√(1 + cos 2θ) + √(1 − cos 2θ))) Using cos 2θ = 2 cos2 θ − 1 1 + cos 2θ = 2 cos2 θ Also cos 2θ = 1 – 2 sin2 θ 2 sin2 θ = 1 − cos 2θ 1 − cos 2θ = 2sin2 θ = tan−1 ((√(𝟐 〖𝐜𝐨𝐬〗^𝟐 𝛉) − √(𝟐 〖𝐬𝐢𝐧〗^𝟐 𝛉))/(√(𝟐 〖𝐜𝐨𝐬〗^𝟐 𝛉) + √(𝟐 〖𝐬𝐢𝐧〗^𝟐 𝛉))) = tan−1 ((√2 cos θ − √2 sin θ)/(√2 cos θ + √(2 ) sin θ)) = tan−1 (( √2 (cos θ − sin θ))/(√2 (cos θ + sin θ))) = tan−1 (( (𝐜𝐨𝐬 𝛉 − 𝐬𝐢𝐧 𝛉))/( (𝐜𝐨𝐬 𝛉 + 𝐬𝐢𝐧 𝛉))) Dividing by cos θ = tan−1 ((cos⁡𝜃/cos⁡𝜃 − sin⁡𝜃/cos⁡𝜃 )/(cos⁡𝜃/cos⁡𝜃 + sin⁡𝜃/cos⁡𝜃 )) = tan−1 ((𝟏 − 𝐭𝐚𝐧 𝛉)/(𝟏 + 𝐭𝐚𝐧 𝛉)) We write ( (cos θ + sin θ))/( (cos θ − sin θ)) in form of tan We know that tan (x – y) = 𝑡𝑎𝑛⁡〖𝑥 −〖 𝑡𝑎𝑛〗⁡〖𝑦 〗 〗/(1 + 𝑡𝑎𝑛⁡〖𝑥 𝑡𝑎𝑛⁡𝑦 〗 ) So, we divide whole equation by cos = tan−1 ((𝟏 − tan θ)/(1 + 𝟏 . tan θ)) = tan−1 ((𝒕𝒂𝒏⁡〖 𝝅/𝟒〗 − tan⁡θ)/(1 + 𝐭𝐚𝐧⁡〖 𝝅/𝟒〗.〖 tan〗⁡θ )) = tan−1 (tan (𝜋/4−θ)) = 𝝅/𝟒 − 𝛉 We know that x = cos 2𝜃 Using tan (x – y ) = 𝒕𝒂𝒏⁡〖𝒙 −〖 𝒕𝒂𝒏〗⁡〖𝒚 〗 〗/(𝟏+ 𝒕𝒂𝒏⁡〖𝒙 𝒕𝒂𝒏⁡𝒚 〗 ) Replace x by 𝜋/4 and y by θ cos−1 x = 2θ 1/2 cos−1 x = θ Hence, tan−1 ((√(1 + x) − √(1 − x))/(√(1 + x) + √(1 − x))) = 𝜋/4 – θ = 𝝅/𝟒 – 𝟏/𝟐 cos−1x Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo