Slide28.JPG

Slide29.JPG
Slide30.JPG
Slide31.JPG

Go Ad-free

Transcript

Misc 9 Prove cot−1 ((√(1 + sin⁡〖x 〗 ) + √(1 − sin⁡x ))/(√(1 +〖 sin〗⁡x ) − √(1 − sin⁡x ))) = 𝑥/2 , x ∈ (0, 𝜋/4) First, finding √(1+sin⁡𝑥 ) & √(1−sin⁡𝑥 ) separately We know that sin 2x = 2 sin x cos x Replace x by 𝑥/2 sin (2𝑥/2) = 2 sin 𝑥/2 cos 𝑥/2 Adding 1 both sides 1 + sin x = 1 + 2 sin 𝑥/2 cos 𝑥/2 1 + sin x = sin2 𝑥/2 + cos2 𝑥/2 + 2sin 𝑥/2 cos 𝑥/2 1 + sin x = (sin 𝑥/2 + cos 𝑥/2)2 √(𝟏+𝒔𝒊𝒏⁡𝒙 ) = sin 𝒙/𝟐 + cos 𝒙/𝟐 We know that sin 2x = 2sin x cos x Replace x by 𝑥/2 sin 2𝑥/2 = 2sin 𝑥/2 cos 𝑥/2 sin x = 2sin 𝑥/2 cos 𝑥/2 Multiply by –1 on both sides And then, Adding 1 both sides 1 – sin x = 1 – 2 sin 𝑥/2 cos 𝑥/2 1 - sin x = cos2 𝑥/2 + sin2 𝑥/2 – 2sin 𝑥/2 cos 𝑥/2 1 – sin x = (cos (𝑥 )/2 – sin 𝑥/2)2 √(𝟏 −𝒔𝒊𝒏⁡𝒙 ) = (cos (𝒙 )/𝟐 – sin 𝒙/𝟐) As sin2 x + cos2 x = 1 sin2 𝑥/2 + cos2 𝑥/2 = 1 As sin2 x + cos2 x = 1 sin2 𝑥/2 + cos2 𝑥/2 = 1 Therefore, cot−1 ((√(1 + sin⁡x ) + √(1 − sin⁡x ))/(√(1 + sin⁡x ) − √(1 −〖 sin〗⁡x ))) = cot−1 ((〖𝐬𝐢𝐧 〗⁡〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗⁡〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗⁡〖𝒙/𝟐〗 − 〖𝒔𝒊𝒏 〗⁡〖𝒙/𝟐〗 )/(〖𝒔𝒊𝒏 〗⁡〖𝒙/𝟐〗 + 〖𝒄𝒐𝒔 〗⁡〖𝒙/𝟐〗 − (〖𝒄𝒐𝒔 〗⁡〖𝒙/𝟐〗 − 〖𝒔𝒊𝒏 〗⁡〖𝒙/𝟐〗 ) )) = cot−1 ((〖sin 〗⁡〖𝑥/2〗 − 〖sin 〗⁡〖𝑥/2〗 + 〖cos 〗⁡〖𝑥/2〗 + 〖cos 〗⁡〖𝑥/2〗)/(〖cos 〗⁡〖𝑥/2〗 − 〖cos 〗⁡〖𝑥/2〗 + 〖sin 〗⁡〖𝑥/2〗 + 〖sin 〗⁡〖𝑥/2〗 )) = cot−1 ((2 cos x/2 )/〖2 sin〗⁡〖 x/2 〗 ) = cot−1 ("cot " 𝐱/𝟐) = 𝒙/𝟐 = R.H.S. Hence, L.H.S. = R.H.S. Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo