Slide25.JPG

Slide26.JPG
Slide27.JPG

Go Ad-free

Transcript

Misc 8 Prove tan−1 √x = 1/2 cos−1 ((1 − x)/(1 + x)), x ∈ [0, 1] Solving R.H.S. 1/2 cos−1 ((1 − x)/(1 + x)) Putting x = tan2 θ = 1/2 cos−1 ((1 − tan2θ)/(1 + tan2θ)) = 1/2 cos−1 ((1 − (sin2 θ)/(cos2 θ))/(1 + (sin2 θ)/(cos2 θ))) = 1/2 cos−1 (((cos2 θ − sin2 θ)/(cos2 θ))/((cos2 θ + sin2 θ)/(cos2 θ))) = 1/2 cos−1 ((cos2 θ − sin2 θ)/(cos2 θ + sin2 θ) ) = 1/2 cos−1 ((𝐜𝐨𝐬𝟐 𝛉 − 𝐬𝐢𝐧𝟐 𝛉)/1 ) = 1/2 cos−1 (cos 2𝛉) = 1/2 × 2θ = θ We assumed that x = tan2 θ √𝑥 = tan θ tan -1 √𝑥 = θ Hence, 1/2 cos−1 ((1 − x)/(1 + x)) = θ 𝟏/𝟐 cos−1 ((𝟏 − 𝐱)/(𝟏 + 𝐱)) = tan−1 √𝐱 Hence, R.H.S. = L.H.S. Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo