Finding principal value
Example 1 Important
Ex 2.1, 1
Ex 2.1, 3
Ex 2.1, 10 Important
Ex 2.1, 2
Ex 2.1, 5 Important
Ex 2.1, 9
Ex 2.1, 7 Important
Ex 2.1, 4 Important
Ex 2.1, 6
Ex 2.1, 8 Important
Example 2
Ex 2.2, 10
Example 6 Important
Ex 2.2, 8
Ex 2.2, 11
Misc 2 Important You are here
Ex 2.2, 13 (MCQ) Important
Misc 1
Ex 2.2, 14 (MCQ) Important
Ex 2.2, 15 (MCQ)
Ex 2.1, 12 Important
Ex 2.1, 14 (MCQ) Important
Ex 2.1, 11 Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 2 Find the value of tan−1(tan〖7π/6〗 ) Let y = tan−1(tan〖7π/6〗 ) tan y =〖 tan〗〖7π/6〗 tan y = tan (210°) But, range of of tan-1 is ("−" 𝜋/2 " , " 𝜋/2) i.e. (−90° ,90°) Hence, y = 210° not possible Now, tan y = tan (210°) tan y = tan (180° + 30°) tan y = tan (30°) tan y = tan (𝜋/6) Hence, y = 𝝅/𝟔 Which is in the range of tan-1 i.e. ((−π)/2, π/2) Hence, tan–1(𝐭𝐚𝐧〖𝟑𝛑/𝟒〗 ) = y = 𝝅/𝟔