Finding principal value
Example 1 Important
Ex 2.1, 1
Ex 2.1, 3
Ex 2.1, 10 Important
Ex 2.1, 2
Ex 2.1, 5 Important
Ex 2.1, 9
Ex 2.1, 7 Important
Ex 2.1, 4 Important
Ex 2.1, 6
Ex 2.1, 8 Important
Example 2
Ex 2.2, 10
Example 6 Important
Ex 2.2, 8
Ex 2.2, 11
Misc 2 Important
Ex 2.2, 13 (MCQ) Important
Misc 1
Ex 2.2, 14 (MCQ) Important You are here
Ex 2.2, 15 (MCQ)
Ex 2.1, 12 Important
Ex 2.1, 14 (MCQ) Important
Ex 2.1, 11 Important
Last updated at April 16, 2024 by Teachoo
Ex 2.2, 14 Find the values of sin (π/3 −"sin−1" (−1/2)) is equal to (A) 1/2 (B) 1/3 (C) 1/4 (D) 1 Solving sin-1 ((−𝟏)/𝟐) Let y = sin-1 ((−1)/2) y = − sin-1 (1/2) y = − 𝛑/𝟔 We know that sin−1 (−x) = − sin −1 x Since sin 𝜋/6 = 1/2 𝜋/6 = sin−1 (𝟏/𝟐) Thus, sin−1 (−1/2) = (−π)/6 Solving sin (𝝅/𝟑 " – sin−1 " ((−𝟏)/𝟐)) = sin [𝜋/3 " − " ((−𝜋)/6)] = sin (𝝅/𝟑 " + " 𝝅/𝟔) = sin ((180° )/3 " + " (180° )/6) = sin (60° + 30°) = sin 90° = 1 Hence, D is correct answer