Chapter 2 Class 12 Inverse Trigonometric Functions
Concept wise

  Slide30.JPG

Slide31.JPG
Slide32.JPG

 

Go Ad-free

Transcript

Ex 2.2, 12 tan (sin−1 3/5 + cot−1 3/2 ) We write sin-1 3/5 & cot-1 3/2 in terms of tan-1 Let sin−1 3/5 = a & cot−1 3/2 = b So, our equation becomes tan (sin−1 𝟑/𝟓 + cot−1 𝟑/𝟐 ) = tan (a + b) = 𝒕𝒂𝒏⁡〖𝒂 + 𝒕𝒂𝒏⁡𝒃 〗/(𝟏 − 𝒕𝒂𝒏⁡〖𝒂 𝒕𝒂𝒏⁡𝒃 〗 ) Finding tan a Since a = sin−1 𝟑/𝟓 sin a = 3/5 cos a = √(1 −𝑠𝑖𝑛2𝑎) = √(1 −(3/5)^2 ) = √(16/25) = 4/5 tan a = sin⁡𝑎/cos⁡𝑎 = (3/5)/(4/5) = 3/5 × 5/4 = 𝟑/𝟒 Finding tan b Since b = cot −1 3/2 cot b = 3/2 tan b = 1/cot⁡𝑏 = 1/(3/2) = 𝟐/𝟑 From (1) tan ("sin−1 " 𝟑/𝟓 " + cot−1 " 𝟑/𝟐) = tan⁡〖𝑎 + tan⁡𝑏 〗/(1 − tan⁡〖𝑎 tan⁡𝑏 〗 ) Putting tan a = 3/4 & tan b = 2/3 = (3/4 + 2/3 )/(1 − 3/4 × 2/3) = ((3(3) + 2(4) )/(4 × 3) )/( (4 × 3 − 3 × 2)/(4 × 3) ) = ((9 + 8 )/(4 × 3) )/( (12 − 6)/(4 × 3) ) = ((17 )/(4 × 3) )/( 6/(4 × 3) ) = 𝟏𝟕/𝟔

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo