Finding principal value
Example 1 Important
Ex 2.1, 1
Ex 2.1, 3
Ex 2.1, 10 Important
Ex 2.1, 2
Ex 2.1, 5 Important
Ex 2.1, 9
Ex 2.1, 7 Important
Ex 2.1, 4 Important
Ex 2.1, 6
Ex 2.1, 8 Important
Example 2
Ex 2.2, 10
Example 6 Important
Ex 2.2, 8
Ex 2.2, 11 You are here
Misc 2 Important
Ex 2.2, 13 (MCQ) Important
Misc 1
Ex 2.2, 14 (MCQ) Important
Ex 2.2, 15 (MCQ)
Ex 2.1, 12 Important
Ex 2.1, 14 (MCQ) Important
Ex 2.1, 11 Important
Last updated at Dec. 16, 2024 by Teachoo
Ex 2.2, 11 Find the values of tan-1(tan〖3π/4〗 ) Let y = tan-1(tan〖3π/4〗 ) tan y =〖 tan〗〖3π/4〗 tan y = tan (135°) Since Range of of tan-1 is (− 𝜋/2 , 𝜋/2 ) i.e. (− 90° ,90°) Hence, y = 135° not possible Now, tan y = tan (135°) tan y = tan (180° – 45°) tan y = – tan (45°) tan y = tan (–45°) tan y = tan ((−𝜋)/4) Hence, y = (−𝜋)/4 Which is in range of tan-1 i.e. ((−π)/2, π/2) Hence, tan-1 (𝐭𝐚𝐧〖𝟑𝛑/𝟒〗 ) = (−𝝅)/𝟒