Not clear how to approach
Not clear how to approach
Last updated at Dec. 16, 2024 by Teachoo
Ex 2.2, 6 Write the function in the simplest form: tan-1 𝑥/√(𝑎^2 − 𝑥^2 ) , |x| < a tan-1 𝑥/√(𝑎^2 − 𝑥^2 ) Let x = a sin 𝜽 = tan-1 ((a sinθ)/√(a^2−(a sinθ)^2 )) = tan-1 ((a sinθ)/√(a^2 − a^2 sin2θ)) = tan-1 ((a sinθ)/√(a^2 (1 − sin^2 θ))) = tan-1 ((a sinθ)/(a√(1 − sin^2 θ))) = tan-1 (sinθ/√(cos^2 θ)) = tan-1 ((a sinθ)/(a√(1 − sin^2 θ))) = tan-1 (sinθ/√(cos^2 θ)) = tan-1 (sinθ/〖 cos〗θ ) = tan-1 (tan θ) = 𝛉 We assumed that x = a sin θ 𝑥/𝑎 = sin θ sin-1 𝒙/𝒂 = θ Hence, tan-1 𝑥/√(𝑎^2 − 𝑥^2 ) = θ = sin-1 𝒙/𝒂