Ex 2.2, 5 - Chapter 2 Class 12 Inverse Trigonometric Functions
Last updated at April 16, 2024 by Teachoo
Not clear how to approach
Not clear how to approach
Last updated at April 16, 2024 by Teachoo
Ex 2.2, 5 Write the function in the simplest form: tan−1 (cos〖x − sinx 〗/cos〖x + sinx 〗 ), 0 < x < π tan−1 (cos〖x − sinx 〗/cos〖x + sinx 〗 ) Dividing by cos x inside = tan−1 (((cos𝑥 − sinx)/cos𝑥 )/((cos𝑥 + sinx)/cos𝑥 )) = tan−1 (((cos x)/cos〖x 〗 − (sin x)/cos〖x 〗 )/((cos x)/cos〖x 〗 + (sin x)/cos〖x 〗 )) = tan−1 ((1 − tanx)/(1 +〖 tan〗x )) We write 𝐜𝐨𝐬〖𝐱 − 𝐬𝐢𝐧𝐱 〗/𝐜𝐨𝐬〖𝐱 + 𝐬𝐢𝐧𝐱 〗 in form of tan We know that tan (x – y) = 𝑡𝑎𝑛〖𝑥 −〖 𝑡𝑎𝑛〗〖𝑦 〗 〗/(1+ 𝑡𝑎𝑛〖𝑥 𝑡𝑎𝑛𝑦 〗 ) So, we divide whole equation by cos = tan−1 ((1 − tanx)/(1 +〖 1 . tan〗x )) = tan−1 ((𝒕𝒂𝒏〖 𝝅/𝟒〗 − tan𝑥)/(1 + 〖𝐭𝐚𝐧 〗〖𝝅/𝟒 .〖 tan〗𝑥 〗 )) = tan−1 ("tan " (𝜋/4−𝑥)) = 𝝅/𝟒 − x Using tan (x – y ) = 𝒕𝒂𝒏〖𝒙 −〖 𝒕𝒂𝒏〗〖𝒚 〗 〗/(𝟏+ 𝒕𝒂𝒏〖𝒙 𝒕𝒂𝒏𝒚 〗 ) Replace x by 𝜋/4 and y by x/2