Finding principal value
Example 1 Important
Ex 2.1, 1
Ex 2.1, 3
Ex 2.1, 10 Important
Ex 2.1, 2
Ex 2.1, 5 Important
Ex 2.1, 9
Ex 2.1, 7 Important
Ex 2.1, 4 Important
Ex 2.1, 6
Ex 2.1, 8 Important
Example 2
Ex 2.2, 10
Example 6 Important
Ex 2.2, 8
Ex 2.2, 11
Misc 2 Important
Ex 2.2, 13 (MCQ) Important
Misc 1
Ex 2.2, 14 (MCQ) Important
Ex 2.2, 15 (MCQ)
Ex 2.1, 12 Important
Ex 2.1, 14 (MCQ) Important
Ex 2.1, 11 Important You are here
Last updated at April 16, 2024 by Teachoo
Ex 2.1, 11 (Method 1) Find the value of tan−1 (1) + cos−1 (−1/2) + sin-1 (−1/2) Solving tan−1 (1) Let y = tan−1 (1) tan y = 1 tan y = tan (𝝅/𝟒) ∴ y = 𝝅/𝟒 Since Range of tan−1 is (−π/2,π/2) Hence, the Principal Value is 𝝅/𝟒 Solving cos−1 ((−𝟏)/𝟐) Let y = cos−1 ((−1)/2) y = 𝜋 − cos−1 (1/2) y = 𝜋 − 𝝅/𝟑 y = 𝟐𝝅/𝟑 Since Range of cos−1 is [0 , 𝜋] Hence, the Principal Value is 2π/3 We know that cos−1 (−x) = 𝜋 − cos −1 x Since cos 𝜋/3 = 1/2 𝜋/3 = cos−1 (1/2) Solving sin−1 ((−𝟏)/𝟐) Let y = sin−1 ((−1)/2) y = − sin−1 (1/2) y = (−𝝅)/𝟔 Since Range of sin−1 is between [(−𝜋)/2 ", " 𝜋/2] Hence, Principal Value is (−𝝅)/𝟔 We know that sin−1 (−x) = − sin−1 x Since sin 𝜋/6 = 1/2 𝜋/6 = sin−1 (1/2) Now we have tan−1 (1) = π/4 , cos−1 ((−1)/2) = 2π/3 , sin−1 ((−1)/2) = (−π)/6 Finding tan−1 (1) + cos−1 ((−𝟏)/𝟐) + sin−1 ((−𝟏)/𝟐) = π/4 + 2π/3 – π/6 = (3 × π + 4 × (2π) − 2 (π))/12 = (3π + 8π − 2π)/12 = 9π/12 = 𝟑𝛑/𝟒 Ex 2.1, 11 (Method 2) Find the value of tan−1 (1) + cos−1 (−1/2) + sin-1 (−1/2) Solving tan−1 (1) Let y = tan−1 (1) tan y = 1 tan y = tan (𝝅/𝟒) ∴ y = 𝝅/𝟒 Since Range of tan−1 is (−π/2,π/2) Hence, the Principal Value is 𝝅/𝟒 Solving cos−1 ((−𝟏)/𝟐) Let y = cos−1 ((−1)/2) cos y = (−1)/2 cos y = cos (𝟐𝝅/𝟑) Since Range of cos−1 is [0 , 𝜋] Hence, the Principal Value is 2π/3. Rough We know that cos 60° = 1/2 θ = 60° = 60 × 𝜋/180 = 𝜋/3 Since (−1)/2 is negative Principal value is 𝜋 – θ i.e. π −𝜋/3 = 2𝜋/3 Solving sin−1 ((−𝟏)/𝟐) Let y = sin−1 ((−1)/2) sin y = (−1)/2 sin y = sin ((−𝝅)/𝟔) Since Range of sin−1 is between [(−𝜋)/2 ", " 𝜋/2] Hence, Principal Value is (−𝝅)/𝟔 Rough We know that sin 30° = 1/2 θ = 30° = 30 × 𝜋/180 = 𝜋/6 Since (−1)/2 is negative Principal value is −θ i.e. (−𝜋)/6 Now we have tan−1 (1) = π/4 , cos−1 ((−1)/2) = 2π/3 , sin−1 ((−1)/2) = (−π)/6 Finding tan−1 (1) + cos−1 ((−𝟏)/𝟐) + sin−1 ((−𝟏)/𝟐) = π/4 + 2π/3 – π/6 = (3 × π + 4 × (2π) − 2 (π))/12 = (3π + 8π − 2π)/12 = 9π/12 = 𝟑𝛑/𝟒