Ex 2.1, 5 - Find principal value of cos-1 (-1/2) - Inverse

Ex 2.1, 5 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 2
Ex 2.1, 5 - Chapter 2 Class 12 Inverse Trigonometric Functions - Part 3

Go Ad-free

Transcript

Ex 2.1, 5 Find the principal value of cos−1 (−1/2) Let y = cos−1 ((−1)/2) cos y = (−1)/2 cos y = cos (𝟐𝝅/𝟑) Since Range of cos−1 is [0 , 𝜋] Hence, the principal value is 𝟐𝝅/𝟑 Rough We know that cos 60° = 1/2 θ = 60° = 60° × 𝜋/180 = 𝜋/3 Since (−1)/2 is negative Principal value is 𝝅 – θ i.e. π −𝜋/3 = 𝟐𝝅/𝟑 Ex 2.1, 5 (Method 1) Find the principal value of cos−1 (−1/2) Let y = cos−1 ((−1)/2) y = 𝜋 − cos−1 (1/2) y = 𝜋 − 𝝅/𝟑 y = 𝟐𝝅/𝟑 Since Range of cos−1 is [0, 𝜋] Hence, the principal value is 𝟐𝝅/𝟑 We know that cos−1 (−x) = 𝜋 − cos−1 x Since cos 𝜋/3 = 1/2 𝜋/3 = cos−1 (1/2) Ex 2.1, 5 (Method 2) Find the principal value of cos−1 (−1/2) Let y = cos−1 ((−1)/2) cos y = (−1)/2 cos y = cos (𝟐𝝅/𝟑) Since Range of cos−1 is [0, 𝜋] Hence, the principal value is 𝟐𝝅/𝟑 Rough We know that cos 60° = 1/2 θ = 60° = 60° × 𝜋/180 = 𝜋/3 Since (−1)/2 is negative Principal value is 𝝅 – θ i.e. π −𝜋/3 = 𝟐𝝅/𝟑

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo