Ex 14.1, 7 - Chapter 14 Class 11 Probability
Last updated at May 9, 2024 by Teachoo
Mutually Exculsive and Exhaustive Events
Mutually Exculsive and Exhaustive Events
Last updated at May 9, 2024 by Teachoo
Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) A and B are mutually exclusive From 16.2 ,6 A = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} B = {█((1, 1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6)"," @█((3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6)@(5, 1),(5, 2),(5, 3),(5, 4),(5, 5),(5, 6) ))} A ∩ B = ϕ Since no common element in A & B So, A & B are mutually exclusive True. Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) (ii) A and B are mutually exclusive and exhaustive From 16.2 ,6 A = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} B = {█((1, 1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6)"," @█((3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6)@(5, 1),(5, 2),(5, 3),(5, 4),(5, 5),(5, 6) ))} A ∪ B = {█((1, 1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6)@(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)@(3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6)@(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)@(5, 1),(5, 2),(5, 3),(5, 4),(5, 5),(5, 6)@(6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6),)}= S Since A ∪ B = S They are exhaustive events Also as per (i), they are mutually exclusive Hence they are mutually exclusive and exhaustive True Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) (iii) A = B’ A = getting even number on the first A = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} B = getting odd no on the first die = {█((1, 1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6)"," @█((3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6)@(5, 1),(5, 2),(5, 3),(5, 4),(5, 5),(5, 6) ))} B’ = getting even number on the first die = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} = A Hence A = B’ True. Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) (iv) A and C are mutually exclusive A = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} C = {█((1, 1), (1, 2), (1, 3), (1, 4),@(2, 1), (2, 2), (2, 3),@(3, 1), (3, 2), (4, 1))} A ∩ C = {(2, 1),(2, 2),(2, 3),(4, 1)} ≠ 𝜙 a Since there is common elements in A and C , So A & C are not mutually exclusive False. Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) (v) A and B’ are mutually exclusive A = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} B’ = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} A ∩ B’ = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} = A Since A ∩ B’ = A ≠ ϕ Hence there is common element between A & B’ Hence A and B’ is not mutually exclusive Hence, false Ex 14.1, 7 Refer to question 6 above, State true or false: (give reason for your answer) (vi) A,’ B’, C are mutually exclusive and exhaustive. A = getting an even number on the first die A’ = getting an odd number on the first die A’ = {█((1, 1),(1, 2),(1, 3),(1, 4),(1, 5),(1, 6)"," @█((3, 1),(3, 2),(3, 3),(3, 4),(3, 5),(3, 6)@(5, 1),(5, 2),(5, 3),(5, 4),(5, 5),(5, 6) ))} B = getting an odd number on the first die B’ = getting an even number on the first die B’ = {█((2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)"," @" " (4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)"," @" " (6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6 6) )} C = {█((1, 1), (1, 2), (1, 3), (1, 4),@(2, 1), (2, 2), (2, 3),@(3, 1), (3, 2), (4, 1))} A’ ∩ B’ = 𝝓 Hence there is no common element in A’ and B’ A & B are mutually exclusive B’ ∩ C = {(2, 1),(2, 2),(2, 3), (4, 1)} Hence there is common element between B’ and C Since B’ ∩ C ≠ 𝜙 Hence, B’ and C are not mutually exclusive Since B’ & C are not mutually exclusive A,’ B’, C are not mutually exclusive and exhaustive ∴ A,’ B’, C are not mutually exclusive and exhaustive Hence, False