Miscellaneous
Misc 1 (ii) Important
Misc 1 (iii)
Misc 1 (iv) Important
Misc 2
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17 Important
Misc 18 Important
Misc 19
Misc 20 Important
Misc 21
Misc 22 Important
Misc 23
Misc 24 Important
Misc 25
Misc 26
Misc 27 Important
Misc 28 Important
Misc 29 Important
Misc 30 Important You are here
Last updated at Dec. 16, 2024 by Teachoo
Misc 30 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): π₯/(π πππ π₯) Let f(x) = π₯/(π πππ π₯) Let u = x & v = sinn x β΄ f(x) = π’/π£ So, fβ(x) = (π’/π£)^β² Using quotient rule fβ(x) = (π’^β² π£ βγ π£γ^β² π’)/π£^2 Finding uβ & vβ u = x uβ = 1 Now, v = sinn x Let p = sin x v = pn By Leibnitz product rule vβ = (pn)β pβ = n pn β 1 pβ Putting p = sin x = n sinn β 1 x (sin x)β = n sinn β 1 x cos x Now, fβ(x) = (π’/π£)^β² = (π’^β² π£ βγ π£γ^β² π’)/π£^2 = ( 1 (sinπβ‘γ π₯γ ) β γπ π ππγ^(πβ1) π₯ cosβ‘γπ₯ (π₯)γ)/γγ(π ππγ^π π₯)γ^2 = ( γπ ππγ^π π₯ β π₯ (πγπ ππγ^(πβ1) π₯ cosβ‘γπ₯) γ)/γγ(π ππγ^π π₯)γ^2 = ( γπππγ^(πβπ) π . sinβ‘γπ₯ β π₯ (π γ γπ ππγ^(πβ1) π₯ cosβ‘γπ₯) γ)/γγ(π ππγ^π π₯)γ^2 = ( γπππγ^(πβπ) π γ(sinγβ‘γπ₯ β ππ₯ . γ cosβ‘γπ₯) γ)/(γπ ππγ^2π π₯) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπ ππγ^2π π . γπππγ^(β(πβπ) ) π) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπππγ^((ππ β π+π)) π) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπ ππγ^(π + 1) π₯) Thus, fβ(x) = πππβ‘γπ β ππ πππβ‘π γ/(γπππγ^(π + π) π)