Chapter 13 Class 11 Limits and Derivatives
Example 3 (i) Important
Ex 12.1, 6 Important
Ex 12.1,10 Important
Ex 12.1, 13
Ex 12.1, 16
Ex 12.1, 22 Important
Ex 12.1, 25 Important
Ex 12.1, 28 Important
Ex 12.1, 30 Important
Ex 12.1, 32 Important
Ex 12.2, 9 (i)
Ex 12.2, 11 (i)
Example 20 (i)
Example 21 (i)
Example 22 (i)
Misc 1 (i)
Misc 6 Important
Misc 9 Important
Misc 24 Important
Misc 27 Important
Misc 28 Important
Misc 30 Important You are here
Chapter 13 Class 11 Limits and Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Misc 30 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): π₯/(π πππ π₯) Let f(x) = π₯/(π πππ π₯) Let u = x & v = sinn x β΄ f(x) = π’/π£ So, fβ(x) = (π’/π£)^β² Using quotient rule fβ(x) = (π’^β² π£ βγ π£γ^β² π’)/π£^2 Finding uβ & vβ u = x uβ = 1 Now, v = sinn x Let p = sin x v = pn By Leibnitz product rule vβ = (pn)β pβ = n pn β 1 pβ Putting p = sin x = n sinn β 1 x (sin x)β = n sinn β 1 x cos x Now, fβ(x) = (π’/π£)^β² = (π’^β² π£ βγ π£γ^β² π’)/π£^2 = ( 1 (sinπβ‘γ π₯γ ) β γπ π ππγ^(πβ1) π₯ cosβ‘γπ₯ (π₯)γ)/γγ(π ππγ^π π₯)γ^2 = ( γπ ππγ^π π₯ β π₯ (πγπ ππγ^(πβ1) π₯ cosβ‘γπ₯) γ)/γγ(π ππγ^π π₯)γ^2 = ( γπππγ^(πβπ) π . sinβ‘γπ₯ β π₯ (π γ γπ ππγ^(πβ1) π₯ cosβ‘γπ₯) γ)/γγ(π ππγ^π π₯)γ^2 = ( γπππγ^(πβπ) π γ(sinγβ‘γπ₯ β ππ₯ . γ cosβ‘γπ₯) γ)/(γπ ππγ^2π π₯) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπ ππγ^2π π . γπππγ^(β(πβπ) ) π) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπππγ^((ππ β π+π)) π) = sinβ‘γπ₯ β ππ₯ cosβ‘π₯ γ/(γπ ππγ^(π + 1) π₯) Thus, fβ(x) = πππβ‘γπ β ππ πππβ‘π γ/(γπππγ^(π + π) π)