Miscellaneous
Misc 1 (ii) Important
Misc 1 (iii)
Misc 1 (iv) Important
Misc 2
Misc 3 Important
Misc 4 Important
Misc 5
Misc 6 Important
Misc 7
Misc 8 Important
Misc 9 Important
Misc 10
Misc 11
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17 Important You are here
Misc 18 Important
Misc 19
Misc 20 Important
Misc 21
Misc 22 Important
Misc 23
Misc 24 Important
Misc 25
Misc 26
Misc 27 Important
Misc 28 Important
Misc 29 Important
Misc 30 Important
Last updated at April 16, 2024 by Teachoo
Misc 17 Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin〖x + cosx 〗/sin〖x − cosx 〗 Let f (x) = sin〖x + cosx 〗/sin〖x − cosx 〗 Let u = sin x + cos x & v = sin x – cos x ∴ f(x) = 𝑢/𝑣 So, f’(x) = (𝑢/𝑣)^′ Using quotient rule f’(x) = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 Finding u’ & v’ u = sin x + cos x u’ = (sin x + cos x)’ = (sin x)’ + (cos x)’ = cos x – sin x v = sin x – cos x v’= (sin x – cos x)’ = (sin x)’ – (cos x)’ = cos x – ( – sin x) = cos x + sin x Derivative of sin x = cos x Derivative of cos x = – sin x Now, f’(x) = (𝑢/𝑣)^′ = (𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 = ( (cos〖𝑥 −〖 sin〗〖𝑥) (sin〖𝑥 −〖 cos〗〖𝑥) − (cos〖𝑥 +〖 sin〗〖𝑥) (sin〖𝑥 +〖 cos〗〖𝑥)〗 〗 〗 〗 〗 〗 〗 〗)/〖(sin〖x −co𝑠 𝑥〗)〗^2 = (−(sin〖𝑥 −〖 cos〗〖𝑥) (sin〖𝑥 −〖 cos〗〖𝑥) − (sin〖𝑥 + cos〖𝑥) (sin〖𝑥 +〖 cos〗〖𝑥)〗 〗 〗 〗 〗 〗 〗 〗)/〖(sin〖x − co𝑠 𝑥〗)〗^2 = (〖−(sin〖x − co𝑠 𝑥〗)〗^2 − 〖(sin〖x + co𝑠 𝑥〗)〗^2)/〖(sin〖x − co𝑠 𝑥〗)〗^2 Using (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab = ( − [(sin2〖𝑥 +〖 cos2〗〖𝑥 − 2 sin〖𝑥 〖 cos〗〖𝑥) + (𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 cos〖𝑥)]〗 〗 〗 〗 〗)/〖(sin〖x − co𝑠 𝑥〗)〗^2 = ( − ( 2𝑠𝑖𝑛2𝑥 + 2𝑐𝑜𝑠2𝑥 − 0))/〖(sin〖x − co𝑠 𝑥〗)〗^2 = ( −2 (𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝟐𝒙))/〖(sin〖x − co𝑠 𝑥〗)〗^2 = ( −2 (𝟏))/〖(sin〖x − co𝑠 𝑥〗)〗^2 = ( −𝟐 )/〖(𝒔𝒊𝒏〖𝐱 − 𝒄𝒐𝒔 𝒙〗)〗^𝟐 (Using sin 2 x + cos 2 x = 1)