Misc 1 - Find derivative by first principle: -x, sin (x+1) Misc 1 - Chapter 13 Class 11 Limits and Derivatives - Part 2

 

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Misc 1 Find the derivative of the following functions from first principle: –x Let f (x) = – x We need to find derivative of f(x) i.e. f’ (x) We know that f’(x) = lim┬(h→0) 𝑓⁡〖(𝑥 + ℎ) − 𝑓(𝑥)〗/ℎ Here, f (x) = – x So, f (x + h) = – (x + h) Putting values f’ (x) = lim┬(h→0)⁡〖((−(x + h)) − (−x))/h〗 = lim┬(h→0)⁡〖(−𝑥 − ℎ + 𝑥)/h〗 = lim┬(h→0)⁡〖(−ℎ)/h〗 = lim┬(h→0)⁡〖(−1)〗 = –1 Hence, f’(x) = – 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo