Chapter 13 Class 11 Limits and Derivatives
Example 3 (i) Important
Ex 12.1, 6 Important
Ex 12.1,10 Important
Ex 12.1, 13
Ex 12.1, 16
Ex 12.1, 22 Important
Ex 12.1, 25 Important
Ex 12.1, 28 Important
Ex 12.1, 30 Important
Ex 12.1, 32 Important
Ex 12.2, 9 (i)
Ex 12.2, 11 (i)
Example 20 (i) You are here
Example 21 (i)
Example 22 (i)
Misc 1 (i)
Misc 6 Important
Misc 9 Important
Misc 24 Important
Misc 27 Important
Misc 28 Important
Misc 30 Important
Chapter 13 Class 11 Limits and Derivatives
Last updated at April 16, 2024 by Teachoo
Example 20 Find the derivative of f(x) from the first principle, where f(x) is (i) sin x + cos x Given f (x) = sin x + cos x We need to find Derivative of f(x) We know that fβ(x) = limβ¬(hβ0) πβ‘γ(π₯ + β) β π(π₯)γ/β Here, f (x) = sin x + cos x f (x + h) = sin (x + h) + cos (x + h) Putting values fβ(x) = limβ¬(hβ0)β‘γ(sinβ‘γ(π₯ + β)γ + cosβ‘(π₯ + β) β (sinβ‘π₯ + cosβ‘γπ₯)γ)/βγ Using sin (A + B) = sin A cos B + cos A sin B & cos (A + B) = cos A cos B β sin A sin B = limβ¬(hβ0)β‘γsinβ‘γπ₯ cosβ‘γβ +γ cosγβ‘γπ₯ sinβ‘γβ + cosβ‘γπ₯ cosβ‘γβ β sinβ‘γπ₯ γ sinγβ‘γβ βγ sinγβ‘γπ₯ βγ cosγβ‘π₯ γ γ γ γ γ γ γ γ γ/hγ = limβ¬(hβ0)β‘γcosβ‘γπ₯ sinβ‘γβ βγ sinγβ‘γπ₯ sinβ‘γβ + sinβ‘γπ₯ cosβ‘γβ β sinβ‘γπ₯ +γ cosγβ‘γπ₯ cosβ‘γβ βγ cosγβ‘π₯ γ γ γ γ γ γ γ γ γ/hγ = limβ¬(hβ0)β‘γsinβ‘γβ γ(cosγβ‘γπ₯ β sinβ‘γπ₯) + sinβ‘γπ₯ (cosβ‘γβ β 1) + cosβ‘π₯ (cosβ‘γβ β 1)γ γ γ γ γ γ/hγ = limβ¬(hβ0)β‘(sinβ‘γβ γ(cosγβ‘γπ₯ β sinβ‘γπ₯)γ γ γ/h+sinβ‘γπ₯ (cosβ‘γβ β 1)γ γ/h+cosβ‘γπ₯ (cosβ‘γβ β 1)γ γ/β)" " = limβ¬(hβ0)β‘γsinβ‘γβ γ(cosγβ‘γπ₯ βγ sinγβ‘γπ₯)γ γ γ/h+limβ¬(hβ0) sinβ‘γπ₯ (cosβ‘γβ β 1)γ γ/h+limβ¬(hβ0) cosβ‘γπ₯ (cosβ‘γβ β 1)γ γ/βγ = limβ¬(hβ0)β‘γ"(cos x β sin x)" sinβ‘β/β+limβ¬(hβ0) "(β sin x)" ((1 β cosβ‘γβ)γ)/βγ+limβ¬(hβ0) "(β cos x)" ((1 β cosβ‘γβ)γ)/β = "(cos x β sin x)" (π₯π’π¦)β¬(π‘βπ)β‘γπ¬π’π§β‘π/πβsinβ‘γπ₯ (π₯π’π¦)β¬(π‘βπ) γ ((π β πππβ‘γπ)γ)/πβcosβ‘π₯ (π₯π’π¦)β¬(π‘βπ) ((π β πππβ‘γπ)γ)/πγUsing (πππ)β¬(ββ0) π ππβ‘β/β = 1 & (πππ)β¬(ββ0) γ(1 β πππ γβ‘γβ)γ/β = 0 Using (πππ)β¬(ββ0) π ππβ‘β/β = 1 & (πππ)β¬(ββ0) γ(1 β πππ γβ‘γβ)γ/β = 0