Example 17 - Chapter 12 Class 11 Limits and Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important You are here
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Last updated at Dec. 16, 2024 by Teachoo
Example 17 Compute the derivative tan x. Let f(x) = tan x We need to find f’ (x) We know that f’(x) = lim┬(ℎ→0) f〖(𝑥 + ℎ) − f (x)〗/ℎ Here, f(x) = tan x f(x + ℎ) = tan (x + ℎ) Putting values f’ (x) = lim┬(ℎ→0) tan〖(𝑥 + ℎ) −tan𝑥 〗/ℎ = lim┬(ℎ→0) 1/ℎ ( tan (x + h) – tan x) = lim┬(ℎ→0) 1/ℎ (sin(𝑥 + ℎ)/cos(𝑥 + ℎ) − sin𝑥/cos𝑥 ) = lim┬(ℎ→0) 1/ℎ (〖cos x sin〗〖(𝑥 + ℎ) −〖 cos〗〖(𝑥 + ℎ) sin𝑥 〗 〗/cos〖(𝑥 + ℎ) cos𝑥 〗 ) = lim┬(ℎ→0) 1/ℎ (𝒔𝒊𝒏〖(𝒙 + 𝒉) 𝒄𝒐𝒔〖𝒙 − 𝒄𝒐𝒔〖(𝒙 + 𝒉). 〖 𝒔𝒊𝒏〗𝒙 〗 〗 〗/cos〖(𝑥 + ℎ) cos𝑥 〗 ) Using sin (A – B) = sin A cos B – cos B sin A Here A = x + h & B = x = lim┬(ℎ→0) 1/ℎ (𝐬𝐢𝐧(( 𝒙 + 𝒉 ) − 𝒙)/cos〖(𝑥 + ℎ) cos𝑥 〗 ) = lim┬(ℎ→0) 1/ℎ ((sin〖ℎ) 〗)/cos〖(𝑥 + ℎ) cos𝑥 〗 = lim┬(ℎ→0) sinℎ/ℎ 1/cos〖(𝑥 + ℎ) cos𝑥 〗 = (𝐥𝐢𝐦)┬(𝒉→𝟎) 𝒔𝒊𝒏𝒉/𝒉 " ×" lim┬(ℎ→0) 1/cos〖(𝑥 + ℎ) cos𝑥 〗 = 1 × lim┬(ℎ→0) 1/cos〖(𝑥 + ℎ) cos𝑥 〗 = lim┬(ℎ→0) 1/cos〖(𝑥 + ℎ) cos𝑥 〗 Putting ℎ = 0 = 1/cos〖(𝑥 + 0) cos𝑥 〗 = 1/〖cos x〗〖 .cos𝑥 〗 = 1/(〖𝑐𝑜𝑠〗^2 𝑥) = sec2x Hence , f’(x) = sec2x