Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6 You are here
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Last updated at Dec. 16, 2024 by Teachoo
Example ,6 (Method 1) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 We know that f’(x) = limh→0 f 𝑥 + ℎ − f (x)h Now f (x) = 2x2 + 3x – 5 So, f (x + h) = 2(x + h)2 + 3(x + h) – 5 Putting values f’ (x) = limh→0 (2(𝑥 + ℎ)2 + 3 𝑥 + ℎ − 5) − (2𝑥2 + 3𝑥 − 5)h f’ (x) = limh→0 (2(𝑥 + ℎ)2 + 3 𝑥 + ℎ − 5) − (2𝑥2 + 3𝑥 − 5)h Putting x = – 1 f’( –1) = limh→0 (2(−1+ℎ)2 + 3 −1+ℎ − 5) − (2 ((−1)2) + 3(−1) − 5)h = limh→0 (2(−1+ℎ)2 + 3 −1+ℎ − 5) − (2 1 − 3 − 5)h = limh→0 (2(−1+ℎ)2 + 3 −1+ℎ − 5) − (−6)h = limh→0 2(−1+ℎ)2 + 3 −1+ℎ − 5 + 6h = limh→0 2 −12 + ℎ2 +2 −1ℎ − 3 + 3ℎ + 1h = limh→0 2 1 + ℎ2 − 2ℎ + 3ℎ − 2h = limh→0 2 + 2ℎ2 − 4ℎ + 3ℎ − 2h = limh→0 2ℎ2− ℎh = limh→0 ℎ(2ℎ − 1)h = limh→0 2h – 1 Putting h = 0 = 2(0) – 1 = – 1 Hence f’( –1) = – 1 Now, finding f’(0) For f’(0) f’(x)= limh→0 𝑓 𝑥 + ℎ − 𝑓(𝑥)ℎ f’(x)= limh→0 2 𝑥 + ℎ2 + 3 𝑥 + ℎ − 5 −[2𝑥2 + 3𝑥 − 5]ℎ putting x = 0 f’(0)= limh→0 2 0 + ℎ2 + 3 0 + ℎ − 5 −[2(0)2 + 3(0) − 5]ℎ f’(0)= limh→0 2ℎ2 + 3ℎ − 5 − [0 + 0 − 5]ℎ f’(0)= limh→0 2ℎ2 + 3ℎ − 5 + 5ℎ f’(0)= limh→0 2ℎ2 + 3ℎℎ = limh→0 ℎ(2ℎ+3)h = limh→0 2h + 3 Putting h = 0 = 2(0) + 3 = 3 Hence, f’(0) = 3 Now, f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 0 Hence Proved Example 6 (Method 2) Find the derivative of the function f(x) = 2x2 + 3x – 5 at x = –1. Also prove that f’(0) + 3f’( –1) = 0. Given f(x) = 2x2 + 3x – 5 Now, f’(x) = (2x2 + 3x – 5)’ = 2(2.x2–1) + 3(1.x1–1) – 0 = 2(2x1) + 3(1) = 4x + 3 Putting x = 0 f’(0) = 4(0) + 3 = 0 + 3 = 3 Taking f’ (0) + 3f’( – 1) Putting value of f’(0) & f’( –1) = 3 + 3 ( –1) = 3 – 3 = 0 Hence Proved