Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii) Important
Example 2 (iii) Important
Example 2 (iv)
Example 2 (v)
Example 3 (i) Important You are here
Example 3 (ii) Important
Example 4 (i)
Example 4 (ii) Important
Example 5
Example 6
Example 7 Important
Example 8
Example 9
Example 10 Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 (i) Important
Example 19 (ii)
Example 20 (i)
Example 20 (ii) Important
Example 21 (i)
Example 21 (ii) Important
Example 22 (i)
Example 22 (ii) Important
Last updated at April 16, 2024 by Teachoo
Example 3 Evaluate: (i) (πππ)β¬(π₯β1) (π₯ 15 β 1)/(π₯10 β 1) (πππ)β¬(π₯β1) (π₯ 15 β 1)/(π₯10 β 1) = (γ(1)γ^15 β 1)/(γ(1)γ^10 β 1) = (1 β 1)/(1 β 1) = 0/0 Since it is form 0/0, We can solve by using theorem (πππ)β¬(π₯βπ) (π₯^π β π^π)/(π₯ β π) = na n β 1 Hence, (πππ)β¬(π₯β1) (π₯^15 β 1)/(π₯^10 β 1) = (πππ)β¬(π₯β1) π₯^15 β 1 Γ·limβ¬(xβ1) x10 β 1 = (πππ)β¬(π₯β1) π₯^15 β γ(1)γ^15 Γ· limβ¬(xβ1) x10 β (1)10 Multiplying and dividing by x β 1 = (πππ)β¬(π₯β1) (π₯^15 β 1^15)/(π₯ β 1) Γ· (πππ)β¬(π§β1) (π₯^10 β γ(10)γ^10)/(π₯ β 1) Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 Using (πππ)β¬(π₯βπ) ( π₯^π β π^π)/(π₯ β π) = nan β 1 (πππ)β¬(π₯β1) (π₯^15 β γ(1)γ^15)/(π₯ β 1) = 15(1)15 β 1 = 15 (1)14 = 15 (πππ)β¬(π₯β1) (π₯^10 β γ(1)γ^10)/(π₯ β 1) = 10(1)10 β 1 = 10 (1)9 = 10 Hence , (πππ)β¬(π₯β1) (π₯^15 β 1^15)/(π₯ β 1) Γ· (πππ)β¬(π₯β1) (π₯^10 β110)/(π₯ β 1) = 15 Γ· 10 = 15/10 = 3/2 β΄ (πππ)β¬(πβπ) (π^ππ β π)/(π^ππ β π) = π/π