Example 3 - Evaluate (i) lim x->1 x15 - 1/x10 - 1 - Chapter 13

Example 3 - Chapter 13 Class 11 Limits and Derivatives - Part 2
Example 3 - Chapter 13 Class 11 Limits and Derivatives - Part 3
Example 3 - Chapter 13 Class 11 Limits and Derivatives - Part 4

 

Go Ad-free

Transcript

Example 3 Evaluate: (i) (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯ 15 βˆ’ 1)/(π‘₯10 βˆ’ 1) (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯ 15 βˆ’ 1)/(π‘₯10 βˆ’ 1) = (γ€–(1)γ€—^15 βˆ’ 1)/(γ€–(1)γ€—^10 βˆ’ 1) = (1 βˆ’ 1)/(1 βˆ’ 1) = 0/0 Since it is form 0/0, We can solve by using theorem (π‘™π‘–π‘š)┬(π‘₯β†’π‘Ž) (π‘₯^𝑛 βˆ’ π‘Ž^𝑛)/(π‘₯ βˆ’ π‘Ž) = na n – 1 Hence, (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^15 βˆ’ 1)/(π‘₯^10 βˆ’ 1) = (π‘™π‘–π‘š)┬(π‘₯β†’1) π‘₯^15 – 1 Γ·lim┬(xβ†’1) x10 – 1 = (π‘™π‘–π‘š)┬(π‘₯β†’1) π‘₯^15 – γ€–(1)γ€—^15 Γ· lim┬(xβ†’1) x10 – (1)10 Multiplying and dividing by x – 1 = (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^15 βˆ’ 1^15)/(π‘₯ βˆ’ 1) Γ· (π‘™π‘–π‘š)┬(𝑧→1) (π‘₯^10 βˆ’ γ€–(10)γ€—^10)/(π‘₯ βˆ’ 1) Using (π‘™π‘–π‘š)┬(π‘₯β†’π‘Ž) ( π‘₯^𝑛 βˆ’ π‘Ž^𝑛)/(π‘₯ βˆ’ π‘Ž) = nan – 1 Using (π‘™π‘–π‘š)┬(π‘₯β†’π‘Ž) ( π‘₯^𝑛 βˆ’ π‘Ž^𝑛)/(π‘₯ βˆ’ π‘Ž) = nan – 1 (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^15 βˆ’ γ€–(1)γ€—^15)/(π‘₯ βˆ’ 1) = 15(1)15 – 1 = 15 (1)14 = 15 (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^10 βˆ’ γ€–(1)γ€—^10)/(π‘₯ βˆ’ 1) = 10(1)10 – 1 = 10 (1)9 = 10 Hence , (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^15 βˆ’ 1^15)/(π‘₯ βˆ’ 1) Γ· (π‘™π‘–π‘š)┬(π‘₯β†’1) (π‘₯^10 βˆ’110)/(π‘₯ βˆ’ 1) = 15 Γ· 10 = 15/10 = 3/2 ∴ (π’π’Šπ’Ž)┬(π’™β†’πŸ) (𝒙^πŸπŸ“ βˆ’ 𝟏)/(𝒙^𝟏𝟎 βˆ’ 𝟏) = πŸ‘/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo