Chapter 13 Class 11 Limits and Derivatives
Example 3 (i) Important
Ex 12.1, 6 Important
Ex 12.1,10 Important
Ex 12.1, 13
Ex 12.1, 16
Ex 12.1, 22 Important
Ex 12.1, 25 Important
Ex 12.1, 28 Important
Ex 12.1, 30 Important
Ex 12.1, 32 Important You are here
Ex 12.2, 9 (i)
Ex 12.2, 11 (i)
Example 20 (i)
Example 21 (i)
Example 22 (i)
Misc 1 (i)
Misc 6 Important
Misc 9 Important
Misc 24 Important
Misc 27 Important
Misc 28 Important
Misc 30 Important
Chapter 13 Class 11 Limits and Derivatives
Last updated at May 7, 2024 by Teachoo
Ex 12.1, 32 If f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ . For what integers m and n does lim┬(x→0) f(x) and lim┬(x→1) f(x) exist? Given limit exists at x = 0 and x = 1 At x = 0 Limit exists at x = 0 if Left hand limit = Right hand limit If f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ LHL at x → 0 lim┬(x→0^− ) f(x) = lim┬(h→0) f(0 − h) = lim┬(h→0) f(−h) = lim┬(h→0) mh^2+n = m(0)2 + n = n RHL at x → 0 lim┬(x→0^+ ) f(x) = lim┬(h→0) f(0 + h) = lim┬(h→0) f (h) = lim┬(h→0) 𝑛ℎ+𝑚 = n(0) + m = m Since LHL = RHL ∴ m = n So, lim┬(x→0) f(x) exists if m = n Now, Limit exists at x = 1 Thefore, Left hand limit = Right hand limit f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ LHL at x → 1 lim┬(x→1^− ) f(x) = lim┬(h→0) f(1 − h) = lim┬(h→0) 𝑛(1−ℎ)+𝑚 = n(1 – 0) + m = n + m RHL at x → 1 lim┬(x→1^+ ) f(x) = lim┬(h→0) f(1 + h) = lim┬(h→0) 𝑛(1+ℎ)^3+𝑚 = n(1 + 0)3 + m = n + m Since LHL = RHL m + n = m + n But, this is always true So, lim┬(x→1) f(x) exists at all integral values of m & n