Ex 12.1
Ex 12.1, 2
Ex 12.1, 3
Ex 12.1, 4 Important
Ex 12.1, 5
Ex 12.1, 6 Important
Ex 12.1, 7
Ex 12.1, 8 Important
Ex 12.1, 9
Ex 12.1,10 Important
Ex 12.1, 11
Ex 12.1, 12
Ex 12.1, 13
Ex 12.1, 14 Important
Ex 12.1, 15 Important
Ex 12.1, 16
Ex 12.1, 17 Important
Ex 12.1, 18
Ex 12.1, 19 Important
Ex 12.1, 20
Ex 12.1, 21 Important
Ex 12.1, 22 Important
Ex 12.1, 23
Ex 12.1, 24
Ex 12.1, 25 Important
Ex 12.1, 26
Ex 12.1, 27
Ex 12.1, 28 Important
Ex 12.1, 29
Ex 12.1, 30 Important
Ex 12.1, 31 You are here
Ex 12.1, 32 Important
Last updated at May 7, 2024 by Teachoo
Ex 12.1, 31 If the function f(x) satisfies limβ¬(x β 1) (π(π₯) β 2)/(π₯2 β 1) = Ο , evaluate limβ¬(xβ1) f(x) . Given limβ¬(xβ1) (π(π₯) β 2)/(π₯^2 β 1) = Ο (limβ¬(xβ1) π(π₯) β 2)/(limβ¬(xβ1) γ(π₯γ^2 β 1) ) = Ο limβ¬(xβ1) (f(x) β 2) = Ο Γ limβ¬(xβ1) (x2 β 1) limβ¬(xβ1) f(x) β limβ¬(xβ1) 2 = Ο (limβ¬(xβ1) x2 β limβ¬(xβ1) 1) By Algebra of limits (πππ)β¬(π₯βπ) (π(π₯))/(π(π₯)) = ((πππ)β¬(π₯βπ) π(π₯))/((πππ)β¬(π₯βπ) π(π₯)) (limβ¬(xβ1) π(π₯) β 2)/(limβ¬(xβ1) γ(π₯γ^2 β 1) ) = Ο limβ¬(xβ1) (f(x) β 2) = Ο Γ limβ¬(xβ1) (x2 β 1) limβ¬(xβ1) f(x) β limβ¬(xβ1) 2 = Ο (limβ¬(xβ1) x2 β limβ¬(xβ1) 1) Finding limits, putting x = 1 limβ¬(xβ1) f(x) β 2 = Ο Γ ((1)2 β 1) limβ¬(xβ1) f(x) β 2 = Ο Γ 0 limβ¬(xβ1) f(x) β 2 = Ο Γ 0 limβ¬(xβ1) f(x) β 2 = 0 limβ¬(xβ1) f(x) = 2 Thus (πππ)β¬(π±βπ) f (x) = 2