Chapter 13 Class 11 Limits and Derivatives
Example 3 (i) Important
Ex 12.1, 6 Important
Ex 12.1,10 Important
Ex 12.1, 13
Ex 12.1, 16
Ex 12.1, 22 Important
Ex 12.1, 25 Important
Ex 12.1, 28 Important
Ex 12.1, 30 Important You are here
Ex 12.1, 32 Important
Ex 12.2, 9 (i)
Ex 12.2, 11 (i)
Example 20 (i)
Example 21 (i)
Example 22 (i)
Misc 1 (i)
Misc 6 Important
Misc 9 Important
Misc 24 Important
Misc 27 Important
Misc 28 Important
Misc 30 Important
Chapter 13 Class 11 Limits and Derivatives
Last updated at May 7, 2024 by Teachoo
Ex 12.1, 30 If f(x) = {β(|x|+1, x<0@0 x=0@|x| β1, x>0)β€ . For what value (s) of a does (πππ)β¬(π₯βπ) f(x) exists? We need to find value of a for which limβ¬(xβa) f(x) exists We check limit different values of a When a = 0 When a < 0 When a > 0 Case 1: When a = 0 Limit exists at a = 0 if limβ¬(xβ0^+ ) " f(x) = " limβ¬(xβ0^β ) " f(x)" f(x) = {β(|x|+1, x<0@0 x=0@|x| β1, x>0)β€ . LHL at x β 0 limβ¬(xβ0^β ) f(x) = limβ¬(hβ0) f(0 β h) = limβ¬(hβ0) f(β h) = limβ¬(hβ0) |ββ| + 1 = limβ¬(hβ0) β + 1 = 0 + 1 = 1 RHL at x β 0 limβ¬(xβ0^+ ) f(x) = limβ¬(hβ0) f(0 + h) = limβ¬(hβ0) f(h) = limβ¬(hβ0) |β| β 1 = limβ¬(hβ0) β β 1 = 0 β 1 = β1 Since 1 β β 1 So, left hand limit and right hand limit are not equal at x = 0 Hence, limβ¬(xβ0) f(x) does not exist β΄ At x = 0, Limit does not exist Case 2: When a < 0 For a < 0 f(x) = |π₯|+1 f(x) = βπ₯+1 Since this a polynomial It is continuous β΄ Limit exists for a < 0 (As x is negative) Case 3: When a > 0 For a < 0 f(x) = |π₯|β1 f(x) = π₯+1 Since this a polynomial It is continuous β΄ Limit exists for a > 0 Therefore, we can say that (πππ)β¬(π₯βπ) f(x) exists for all a, where a β 0 (As x is positive)