Chapter 13 Class 11 Limits and Derivatives
Example 3 (i) Important
Ex 12.1, 6 Important
Ex 12.1,10 Important
Ex 12.1, 13
Ex 12.1, 16
Ex 12.1, 22 Important You are here
Ex 12.1, 25 Important
Ex 12.1, 28 Important
Ex 12.1, 30 Important
Ex 12.1, 32 Important
Ex 12.2, 9 (i)
Ex 12.2, 11 (i)
Example 20 (i)
Example 21 (i)
Example 22 (i)
Misc 1 (i)
Misc 6 Important
Misc 9 Important
Misc 24 Important
Misc 27 Important
Misc 28 Important
Misc 30 Important
Chapter 13 Class 11 Limits and Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Ex 12.1, 22 lim┬(x → π/2) tan2x/(x − π/2) lim┬(x → π/2) tan2x/(x − π/2) Putting y = x – π/2 When x → 𝜋/2 y → 𝜋/2 – 𝜋/2 y → 0 So, our equation becomes lim┬(x→π/2) tan2x/(x − π/2) = lim┬(y→0) (tan2(𝜋/2 + 𝑦)/𝑦) = lim┬(y→0) ((〖tan 〗〖(𝜋 + 2𝑦〗))/𝑦) = lim┬(y→0) (tan2𝑦/𝑦) = lim┬(y→0) (1/𝑦 . sin2𝑦/cos2𝑦 ) = lim┬(y→0) (sin2𝑦/𝑦 . 1/cos2𝑦 ) = lim┬(y→0) sin2𝑦/𝑦 ×lim┬(y→0) 1/cos2𝑦 Multiply & Divide by 2 (As tan〖(𝜋+𝑥〗)=tan x) = lim┬(y→0) (sin2𝑦/𝑦 "× " 2/2).lim┬(y→0) 1/cos2𝑦 = 2 lim┬(y→0) (𝒔𝒊𝒏𝟐𝒚/𝟐𝒚).lim┬(y→0) 1/cos2𝑦 Using ( lim)┬(x→0) (sinx )/x = 1 Replacing x by 2y. lim┬(x→0) sin2𝑦/2y = 1 = 2 × 1 × lim┬(y→0) 1/cos2𝑦 = 2 × 1/cos〖2(0)〗 = 2/cos0 = 2/1 = 2 (As cos 0 = 1)