Slide36.JPG

Slide37.JPG
Slide38.JPG

Slide39.JPG

Slide40.JPG

 

Slide41.JPG Slide42.JPG

Go Ad-free

Transcript

Ex 12.1, 21 (Method 1) Evaluate the Given limit: lim┬(x→0) (cosec x – cot x) lim┬(x→0) (cosec x – cot x) = lim┬(x→0) (1/sin⁡𝑥 −cos⁡𝑥/sin⁡𝑥 ) = lim┬(x→0) (1 −〖 cos〗⁡𝑥)/sin⁡〖𝑥 〗 Putting x = 0 = (1 − cos⁡〖0 〗)/sin⁡0 = (1 − 1)/0 = 0/0 Using cosec θ = (1 )/(sin θ) cot θ = (cos θ)/(sin θ) Since it is coming 0/0 Hence, we need to simplify lim┬(x→0) (1 −〖 cos〗⁡𝑥)/sin⁡〖𝑥 〗 = lim┬(x→0) (1 −〖 cos〗⁡𝑥)/sin⁡〖𝑥 〗 × (𝟏 + 𝐜𝐨𝐬⁡𝒙)/(𝟏 + 𝒄𝒐𝒔⁡𝒙 ) = lim┬(x→0) (1^2 −〖 cos^2〗⁡𝑥)/(sin⁡〖𝑥 〗 (1 + cos⁡𝑥 ) ) = lim┬(x→0) (𝟏 −〖 〖𝒄𝒐𝒔〗^𝟐〗⁡𝒙)/(sin⁡〖𝑥 〗 (1 + cos⁡𝑥 ) ) = lim┬(x→0) 〖 〖𝐬𝐢𝐧〗^𝟐〗⁡𝒙/(sin⁡〖𝑥 〗 (1 + cos⁡𝑥 ) ) = lim┬(x→0) 〖 𝑠𝑖𝑛〗⁡𝑥/((1 + cos⁡𝑥 ) ) Putting x = 0 = 〖 𝑠𝑖𝑛〗⁡0/((1 + cos⁡0 ) ) = 0/(1 + 1) = 0/2 = 0 Ex 12.1, 21 (Method 2) Evaluate the Given limit: lim┬(x→0) (cosec x – cot x) (𝑙𝑖𝑚)┬(𝑥→0) (cosec x – cot x) = (𝑙𝑖𝑚)┬(𝑥→0) ((𝑐𝑜𝑠𝑒𝑐 𝑥 − 𝑐𝑜𝑡⁡〖𝑥) 〗)/𝟏 = (𝑙𝑖𝑚)┬(𝑥→0) (𝑐𝑜𝑠𝑒𝑐 𝑥 −〖 𝑐𝑜𝑡〗⁡𝑥)/(𝒄𝒐𝒔𝒆𝒄𝟐 𝒙 − 𝒄𝒐𝒕𝟐 𝒙) = (𝑙𝑖𝑚)┬(𝑥→0) (𝑐𝑜𝑠𝑒𝑐 𝑥 −〖 𝑐𝑜𝑡〗⁡𝑥)/((𝑐𝑜𝑠𝑒𝑐 𝑥 −〖 𝑐𝑜𝑡〗⁡〖𝑥) (𝑐𝑜𝑠𝑒𝑐 𝑥 +〖 𝑐𝑜𝑡〗⁡〖𝑥)〗 〗 ) = (𝑙𝑖𝑚)┬(𝑥→0) 1/(𝑐𝑜𝑠𝑒𝑐 𝑥 +〖 𝑐𝑜𝑡〗⁡𝑥 ) (𝑈𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑒𝑐2 𝜃−𝑐𝑜𝑡2 𝜃=1) Using cosec θ = (1 )/(sin θ) cot θ = (cos θ)/(sin θ) = (𝑙𝑖𝑚)┬(𝑥→0) 1/(1/𝑠𝑖𝑛⁡𝑥 + 𝑐𝑜𝑠⁡𝑥/𝑠𝑖𝑛⁡𝑥 ) = (𝑙𝑖𝑚)┬(𝑥→0) 1/((1 + 〖 𝑐𝑜𝑠〗⁡𝑥)/𝑠𝑖𝑛⁡𝑥 ) = (𝑙𝑖𝑚)┬(𝑥→0) 𝑠𝑖𝑛⁡𝑥/(1 + 𝑐𝑜𝑠⁡𝑥 ) Putting x = 0 = sin⁡0/(1 +〖 cos〗⁡0 ) = 0/(1 + 1) = 0/2 = 0 Ex 12.1, 21 (Method 3) Evaluate the Given limit: lim┬(x→0) (cosec x – cot x) (𝑙𝑖𝑚)┬(𝑥→0) (cosec 𝑥 − cot 𝑥) = (𝑙𝑖𝑚)┬(𝑥→0) 1/sin⁡𝑥 − cos⁡𝑥/sin⁡𝑥 = (𝑙𝑖𝑚)┬(𝑥→0) ((1 − cos⁡𝑥)/sin⁡𝑥 ) Using 1 − cos 2𝜃 = 2 sin2 𝜃 and sin 2𝜃 = 2 sin 𝜃 cos 𝜃 = (𝑙𝑖𝑚)┬(𝑥→0) (2 sin^2⁡〖 𝑥/2〗)/(2 sin⁡〖 𝑥/2〗 cos⁡〖 𝑥/2〗 ) = (𝑙𝑖𝑚)┬(𝑥→0) tan⁡〖𝑥/2〗 Putting x = 0 = tan 0 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo