Ex 12.1
Ex 12.1, 2
Ex 12.1, 3
Ex 12.1, 4 Important
Ex 12.1, 5
Ex 12.1, 6 Important
Ex 12.1, 7
Ex 12.1, 8 Important
Ex 12.1, 9
Ex 12.1,10 Important
Ex 12.1, 11
Ex 12.1, 12
Ex 12.1, 13
Ex 12.1, 14 Important
Ex 12.1, 15 Important
Ex 12.1, 16
Ex 12.1, 17 Important
Ex 12.1, 18
Ex 12.1, 19 Important
Ex 12.1, 20 You are here
Ex 12.1, 21 Important
Ex 12.1, 22 Important
Ex 12.1, 23
Ex 12.1, 24
Ex 12.1, 25 Important
Ex 12.1, 26
Ex 12.1, 27
Ex 12.1, 28 Important
Ex 12.1, 29
Ex 12.1, 30 Important
Ex 12.1, 31
Ex 12.1, 32 Important
Last updated at May 7, 2024 by Teachoo
Ex 12.1, 20 Evaluate the Given limit: limβ¬(xβ0) (π ππβ‘ππ₯ + ππ₯)/(ππ₯ + π ππβ‘ππ₯ ) a , b, a + b β 0 limβ¬(xβ0) (π ππβ‘ππ₯ + ππ₯)/(ππ₯ +γ π ππγβ‘ππ₯ ) = limβ¬(xβ0) π₯(π ππβ‘ππ₯/π₯ + π)/π₯(π + π ππβ‘ππ₯/π₯) = limβ¬(xβ0) ((π ππβ‘ππ₯/π₯ ) + π)/(π + ( π ππβ‘ππ₯/π₯) ) Multiply & Divide by π ππβ‘ππ₯/π₯ by ax & Multiply & Divide π ππβ‘γπ₯ γ/π by bx = limβ¬(xβ0) ((π ππβ‘ππ₯/π₯ . ππ₯/ππ₯ ) + π)/(π + ( π ππβ‘ππ₯/π₯ . ππ₯/ππ₯) ) = limβ¬(xβ0) ((π ππβ‘ππ₯/ππ₯ . ππ₯/π₯ ) + π)/(π + ( π ππβ‘ππ₯/ππ₯ . ππ₯/π₯) ) = limβ¬(xβ0) ((πππβ‘ππ/ππ). π + π)/(π + ( πππβ‘ππ/ππ) π) Using limβ¬(xβ0) (sinβ‘x )/x = 1 Replacing x by ax. limβ¬(xβ0) sinβ‘ππ₯/ax = 1 Replacing x by bx limβ¬(xβ0) (sinβ‘bx )/bx = 1 = ((π) π + π)/(π +(π)π) = (π + π)/(π + π) = 1