Slide34.JPG

Slide35.JPG

Go Ad-free

Transcript

Ex 12.1, 20 Evaluate the Given limit: lim┬(xβ†’0) (π‘ π‘–π‘›β‘π‘Žπ‘₯ + 𝑏π‘₯)/(π‘Žπ‘₯ + 𝑠𝑖𝑛⁑𝑏π‘₯ ) a , b, a + b β‰  0 lim┬(xβ†’0) (π‘ π‘–π‘›β‘π‘Žπ‘₯ + 𝑏π‘₯)/(π‘Žπ‘₯ +γ€– 𝑠𝑖𝑛〗⁑𝑏π‘₯ ) = lim┬(xβ†’0) π‘₯(π‘ π‘–π‘›β‘π‘Žπ‘₯/π‘₯ + 𝑏)/π‘₯(π‘Ž + 𝑠𝑖𝑛⁑𝑏π‘₯/π‘₯) = lim┬(xβ†’0) ((π‘ π‘–π‘›β‘π‘Žπ‘₯/π‘₯ ) + 𝑏)/(π‘Ž + ( 𝑠𝑖𝑛⁑𝑏π‘₯/π‘₯) ) Multiply & Divide by π‘ π‘–π‘›β‘π‘Žπ‘₯/π‘₯ by ax & Multiply & Divide 𝑠𝑖𝑛⁑〖π‘₯ γ€—/𝑏 by bx = lim┬(xβ†’0) ((π‘ π‘–π‘›β‘π‘Žπ‘₯/π‘₯ . π‘Žπ‘₯/π‘Žπ‘₯ ) + 𝑏)/(π‘Ž + ( 𝑠𝑖𝑛⁑𝑏π‘₯/π‘₯ . 𝑏π‘₯/𝑏π‘₯) ) = lim┬(xβ†’0) ((π‘ π‘–π‘›β‘π‘Žπ‘₯/π‘Žπ‘₯ . π‘Žπ‘₯/π‘₯ ) + 𝑏)/(π‘Ž + ( 𝑠𝑖𝑛⁑𝑏π‘₯/𝑏π‘₯ . 𝑏π‘₯/π‘₯) ) = lim┬(xβ†’0) ((π’”π’Šπ’β‘π’‚π’™/𝒂𝒙). π‘Ž + 𝑏)/(π‘Ž + ( π’”π’Šπ’β‘π’ƒπ’™/𝒃𝒙) 𝑏) Using lim┬(xβ†’0) (sin⁑x )/x = 1 Replacing x by ax. lim┬(xβ†’0) sinβ‘π‘Žπ‘₯/ax = 1 Replacing x by bx lim┬(xβ†’0) (sin⁑bx )/bx = 1 = ((𝟏) π‘Ž + 𝑏)/(π‘Ž +(𝟏)𝑏) = (π‘Ž + 𝑏)/(π‘Ž + 𝑏) = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo