Slide24.JPG

Slide25.JPG

Go Ad-free

Transcript

Ex 12.1, 14 Evaluate the Given limit: lim┬(x→0) sin⁡〖ax 〗/(sin bx), a, b ≠ 0 (𝑙𝑖𝑚)┬(𝑥→0) 𝑠𝑖𝑛⁡〖𝑎𝑥 〗/(𝑠𝑖𝑛 𝑏𝑥) = (𝑙𝑖𝑚)┬(𝑥→0) sin ax × (𝑙𝑖𝑚)┬(𝑥→0) 1/𝑠𝑖𝑛⁡𝑏𝑥 Multiplying & dividing by ax = (𝒍𝒊𝒎)┬(𝒙→𝟎) 𝒔𝒊𝒏⁡𝒂𝒙/𝒂𝒙 × (𝑙𝑖𝑚)┬(𝑥→0) 𝑎𝑥/𝑠𝑖𝑛⁡𝑏𝑥 = 1 × (𝑙𝑖𝑚)┬(𝑥→0) 𝑎𝑥/𝑠𝑖𝑛⁡𝑏𝑥 = (𝑙𝑖𝑚)┬(𝑥→0) 𝑎𝑥/𝑠𝑖𝑛⁡𝑏𝑥 Multiplying & dividing by bx = (𝑙𝑖𝑚)┬(𝑥→0) 𝑎𝑥/𝑠𝑖𝑛⁡𝑏𝑥 × 𝑏𝑥/𝑏𝑥 Using lim┬(x→0) sin⁡𝑥/𝑥 = 1 Replacing x by ax lim┬(x→0) sin⁡𝑎𝑥/𝑎𝑥 = 1 = (𝑙𝑖𝑚)┬(𝑥→0) 𝑏𝑥/𝑠𝑖𝑛⁡𝑏𝑥 × 𝑎𝑥/𝑏𝑥 = (𝑙𝑖𝑚)┬(𝑥→0) 𝑏𝑥/𝑠𝑖𝑛⁡𝑏𝑥 × 𝑎/𝑏 = 𝑎/𝑏 "×" (𝑙𝑖𝑚)┬(𝑥→0) 𝑏𝑥/𝑠𝑖𝑛⁡𝑏𝑥 = 𝑎/𝑏 ÷ (𝒍𝒊𝒎)┬(𝒙→𝟎) 𝒔𝒊𝒏⁡𝒃𝒙/𝒃𝒙 = 𝑎/𝑏 ÷ 1 = 𝒂/𝒃 Using lim┬(x→0) sin⁡𝑥/𝑥 = 1 Replacing x by bx lim┬(x→0) sin⁡𝑏𝑥/𝑏𝑥 = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo