Slide32.JPG

Slide33.JPG
Slide34.JPG
Slide35.JPG
Slide36.JPG Slide37.JPG

Go Ad-free

Transcript

Ex 11.2, 5 Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (–4, 0, 0) is equal to 10. Given A (4, 0, 0), B ( – 4, 0, 0) Let the coordinates of point P be (x, y, z) Given that , Sum Distance of PA & PB is 10 PA + PB = 10 First, lets calculate PA & PB Calculating PA P (x, y, z), A (4, 0, 0) PA = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = 4, y2 = 0, z2 = 0 PA = √((4−𝑥)2+(0−𝑦)2+(0−𝑧)2) = √((4−𝑥)2+(−𝑦)2+(−𝑧)2) = √((4−𝑥)2+𝑦2+𝑧2) Calculating PB P (x, y, z), B ( – 4, 0, 0) PB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = x, y1 = y, z1 = z x2 = – 4, y2 = 0, z2 = 0 PB = √((−4−𝑥)2+(0−𝑦)2+(0−𝑧)2) = √((−1)2(4+𝑥)2+(−𝑦)2+(−𝑧)2) = √((4+𝑥)2+𝑦2+𝑧2) Now, given that PA + PB = 10 Putting value of PA & PB √((4−𝑥)2+y2+z2) + √((4+𝑥)2+y2+z2) = 10 √((4−𝑥)2+y2+z2) = 10 – √((4+𝑥)2+y2+z2) Squaring both sides (4−𝑥)2+y2+z2 = (10−√((4+𝑥)2+y2+z2))^2 (4 – x)2 + y2 + z2 = (10)2 + (√((4+𝑥)2+y2+z2))2 – 2 (10) √((4+𝑥)2+y2+(z)2) (4 – x)2 + y2 + z2 = 100 + (4 + x)2 + y2 + z2 – 20√((4+𝑥)2+y2+(z)2) (4 – x)2 – (4 + x)2 + y2 – y2 + z2 – z2 = –20√((4+𝑥)2+y2+z2) (4 – x)2 – (4 + x)2 + 0 + 0 – 100 = –20√((4+𝑥)2+y2+z2) ((4 – x) – (4 + x))((4 – x) + (4 + x)) – 100 = –20√((4+𝑥)2+y2+z2) (4 – x – 4 − x)(4 – x + 4 + x) – 100 = –20√((4+𝑥)2+y2+z2) (–2x) (8) – 100 = –20√((4+𝑥)2+y2+z2) –16x – 100 = –20 √((4+𝑥)2+y2+z2) –4(4x + 25) = –4(5) √((4+𝑥)2+y2+z2) (4x + 25) = –5√((4+𝑥)2+y2+z2) Again Squaring both sides (4x + 25)2 = 25 ((4 + x)2 + y2 + z2) (4x)2 + (25)2 + 2(25)(4x) = 25 ((4)2 + x2 + 2(4)(x) + y2 + z2 ) 16x2 + 625 + 200x = 25(16 + x2 + 8x + y2 + z2) 16x2 + 625 + 200x = 400 + 25x2 + 200x + 25y2 + 25z2 16x2 + 200x – 25x2 – 200 x –25y2 – 25z2 = 400 – 625 16x2 – 25x2 – 25y2 – 25z2 – 200x + 200x = –225 – 9x2 –25y2 – 25z2 + 0 = –225 0 = 9x2 + 25y2 + 25z2 – 225 9x2 + 25y2 + 25z2 – 225 = 0 Which is the required equation of set of points P(x, y, z)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo