Slide41.JPG

Slide42.JPG
Slide43.JPG
Slide44.JPG

Go Ad-free

Transcript

Ex 10.4, 13 Find the equation of the hyperbola satisfying the given conditions: Foci (±4, 0), the latus rectum is of length 12 Since the foci are on the x-axis. Hence, the required equation of the hyperbola is 𝒙𝟐/𝒂𝟐 – 𝒚𝟐/𝒃𝟐 = 1 Now, coordinates of foci are (±c, 0) & given foci = (±4, 0) so, (±c,0) = (±4,0) c = 4 Now, Latus rectum =2𝑏2/𝑎 Given latus rectum = 12 So, 2𝑏2/𝑎=12 2b2 = 12a b2 = 6a We know that c2 = a2 + b2 Putting value of c & b2 (4)2 = a2 + 6a 16 = a2 + 6a a2 + 6a − 16 = 0 a2 + 8a − 2a −16 = 0 a(a + 8) − 2 (a + 8) = 0 (a − 2) (a + 8) = 0 So, a = 2 or a = -8 Since ‘a’ is distance, it cannot be negative , So a = −8 is not possible ∴ a = 2, From (1) b2 = 6a b2 = 6 ×2 b2 = 12 Thus, Required equation of hyperbola 𝑥2/𝑎2 − 𝑦2/𝑏2=1 Putting values 𝑥2/22 − 𝑦2/12=1 𝒙𝟐/𝟒 − 𝒚𝟐/𝟏𝟐=𝟏

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo