Slide58.JPG

Slide59.JPG
Slide60.JPG
Slide61.JPG
Slide62.JPG

Go Ad-free

Transcript

Ex 10.3, 20 Find the equation for the ellipse that satisfies the given conditions: Major axis on the x-axis and passes through the points (4, 3) and (6, 2). Since Major axis is on the x-axis So required equation of ellipse is 𝒙^𝟐/𝒂^𝟐 + 𝒚^𝟐/𝒃^𝟐 = 1 Given that ellipse passes through point (4, 3) & (6, 2) Points (4, 3) & (6, 2) will satisfy the equation of ellipse Putting x = 4 & y = 3 in (1) 〖(4)〗^2/𝑎^2 + 〖(3)〗^2/𝑏^2 = 1 16/𝑎^2 + 9/𝑏^2 = 1 Putting x = 6 & y = 2 in (1) 〖(6)〗^2/𝑎^2 + 〖(2)〗^2/𝑏^2 = 1 36/𝑎^2 + 4/𝑏^2 = 1 From (3) 16/𝑎^2 = 1 − 9/𝑏^2 1/𝑎^2 = 1/16 (1 − 9/𝑏^2 ) Putting value of 1/𝑎^2 in (2) 36/𝑎^2 + 4/𝑏^2 = 1 36(1/𝑎^2 ) + 4/𝑏^2 = 1 36(1/16 (1−9/𝑏^2 )) + 4/𝑏^2 = 1 36/16 (1−9/𝑏^2 ) + 4/𝑏^2 = 1 9/4 (1−9/𝑏^2 ) + 4/𝑏^2 = 1 9/4 − 81/〖4𝑏〗^2 + 4/𝑏^2 = 1 (−81)/(4𝑏^2 ) + 4/𝑏^2 = 1 − 9/4 (−81 + 16)/(4𝑏^2 ) = (4 − 9)/4 (−65)/(4𝑏^2 ) = (−5)/4 (−5)/4 (13/𝑏^2 )= (−5)/4 13/𝑏^2 = 1 1/𝑏^2 = 1/13 b2 = 13 Putting value of b2 in 1/𝑎^2 = 1/16 (1 − 9/𝑏^2 ) 1/𝑎^2 = 1/16 (1 − 9/13) 1/𝑎^2 = 1/16 ( (13 − 9)/13) 1/𝑎^2 = 1/16 ( 4/13) 1/𝑎^2 = 1/52a a2 = 52 Equation of ellipse is 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 Putting value of a2 & b2 𝒙^𝟐/𝟓𝟐 + 𝒚^𝟐/𝟏𝟑 = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo