Slide53.JPG

Slide54.JPG
Slide55.JPG
Slide56.JPG
Slide57.JPG

Go Ad-free

Transcript

Ex 10.3, 19 Find the equation for the ellipse that satisfies the given conditions: Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6). Since major axis is along y-axis & centre is at (0,0) So required equation of ellipse is 𝒙^𝟐/𝒃^𝟐 + 𝒚^𝟐/𝒂^𝟐 = 1 Given that ellipse passes through point (3, 2) & (1, 6) Points (3, 2) & (1, 6) will satisfy equation of ellipse. Putting x = 3 & y = 2 in (1) (3)^2/𝑏^2 + (2)^2/𝑎^2 = 1 9/𝑏^2 + 4/𝑎^2 = 1 Putting x = 1 & y = 6 in (1) 〖(1)〗^2/𝑏^2 + 〖(6)〗^2/𝑎^2 = 1 1/𝑏^2 + 36/𝑎^2 = 1 From (3) 1/𝑏^2 + 36/𝑎^2 = 1 1/𝑏^2 = 1 − 36/𝑎^2 Putting value of b2 in (2) 9/𝑏^2 + 4/𝑎^2 = 1 9(1/𝑏^2 ) + 4/𝑎^2 = 1 9(1−36/𝑎^2 ) + 4/𝑎^2 = 1 9 − 324/𝑎^2 + 4/𝑎^2 = 1 (−320)/𝑎^2 = 1 − 9 (−320)/𝑎^2 = −8 1/𝑎^2 = (−8)/(−320) 1/𝑎^2 = 8/320 1/𝑎^2 = 1/40 a2 = 40 Putting value of 𝑎^2 in (3) 1/𝑏^2 + 36/𝑎^2 = 1 1/𝑏^2 = 1 − 36/𝑎^2 1/𝑏^2 = 1 − 36 (1/40) 1/𝑏^2 = (40 − 36)/40 1/𝑏^2 = 4/40 1/𝑏^2 = 1/10 b2 = 10 Now required equation of ellipse is 𝑥^2/𝑏^2 + 𝑦^2/𝑎^2 = 1 Putting value of b2 & a2 𝒙^𝟐/𝟏𝟎 + 𝒚^𝟐/𝟒𝟎 = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo