Ex 10.3, 9 - Chapter 10 Class 11 Conic Sections
Last updated at Dec. 16, 2024 by Teachoo
Ellipse - Defination
Ex 10.3, 1
Ex 10.3, 3
Ex 10.3, 5 Important
Ex 10.3, 2 Important
Ex 10.3, 4
Ex 10.3, 6
Ex 10.3, 9 You are here
Example 10 Important
Ex 10.3, 8
Ex 10.3, 7 Important
Ex 10.3, 10
Example, 11
Ex 10.3, 12 Important
Ex 10.3, 11 Important
Ex 10.3, 13
Ex 10.3, 14 Important
Ex 10.3, 15
Example 12 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 Important
Example 13 Important
Ex 10.3, 19 Important
Ex 10.3, 20
Last updated at Dec. 16, 2024 by Teachoo
Ex 10.3, 9 Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse 4x2 + 9y2 = 36 Given 4x2 + 9y2 = 36. Divide equation by 36 4 2 36 + 9 2 36 = 36 36 2 9 + 2 4 = 1 Since 9 > 4 Hence the above equation is of the form 2 2 + 2 2 = 1 Comparing (1) & (2) We know that c = a2 b2 c = 9 4 c = Co-ordinates of foci = ( c, 0) = ( 5 , 0) So co-ordinate of foci are ( 5 , 0) & ( 5 , 0) Vertices = ( a, 0) = ( 3, 0) So vertices are (3, 0) & ( 3, 0) Length of major axis = 2a = 2 3 = 6 Length of minor axis = 2b = 2 2 = 4 Eccentricity e = = 5 3 Length of Latus rectum = 2 2 = 2 4 3 = 8 3