Ex 10.3, 5 - Chapter 10 Class 11 Conic Sections
Last updated at Dec. 16, 2024 by Teachoo
Ellipse - Defination
Ex 10.3, 1
Ex 10.3, 3
Ex 10.3, 5 Important You are here
Ex 10.3, 2 Important
Ex 10.3, 4
Ex 10.3, 6
Ex 10.3, 9
Example 10 Important
Ex 10.3, 8
Ex 10.3, 7 Important
Ex 10.3, 10
Example, 11
Ex 10.3, 12 Important
Ex 10.3, 11 Important
Ex 10.3, 13
Ex 10.3, 14 Important
Ex 10.3, 15
Example 12 Important
Ex 10.3, 16 Important
Ex 10.3, 17
Ex 10.3, 18 Important
Example 13 Important
Ex 10.3, 19 Important
Ex 10.3, 20
Last updated at Dec. 16, 2024 by Teachoo
Ex 10.3, 5 Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse x2/49 + y2/36 = 1 𝑥^2/49 + 𝑦^2/36 = 1 Since 49 > 36 Hence the above equation is of the form 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 Comparing (1) & (2) We know that c = √(a2−b2) c = √(49−36) c = √𝟏𝟑 Coordinate of foci = (± c, 0) = (± √𝟏𝟑, 0) So coordinate of foci are (√13, 0), (−√13, 0) Vertices = (± a, 0) = (±7, 0) So vertices are (7, 0) & (−7, 0) Length of major axis = 2a = 2 × 7 = 14 Length of minor axis = 2b = 2 × 6 = 12 Eccentricity e = 𝑐/𝑎 = √𝟏𝟑/𝟕 Latus rectum = (2𝑏^2)/𝑎 = (2 × 36)/7 = 𝟕𝟐/𝟕