Slide77.JPG

Slide78.JPG
Slide79.JPG
Slide80.JPG

Go Ad-free

Transcript

Ex 9.3, 17 If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that 1/𝑝2 = 1/𝑎2 + 1/𝑏2 . Equation of line whose intercept on the axes are a & b is 𝑥/𝑎 + 𝑦/𝑏 = 1 The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by d = |𝐴𝑥_1 + 𝐵𝑦_1 + 𝐶|/√(𝐴^2 + 𝐵^2 ) Now, 𝑥/𝑎 + 𝑦/𝑏 = 1 (1/𝑎)x + (1/𝑏)y – 1 = 0 Comparing with Ax + By + C = 0 Hence, A = 1/𝑎, B = 1/𝑏 & C = –1 Also, Distance from origin (0, 0) to the line 𝑥/𝑎 + 𝑦/𝑏 = 1 is p So, distance d = p & x1 = 0, y1 = 0 Putting values d = |𝐴𝑥_1 + 𝐵𝑦_1 + 𝐶|/√(𝐴^2 + 𝐵^2 ) p = |(0)(1/𝑎) + (0)(1/𝑏) − 1|/√((1/𝑎)^2+ (1/𝑏)^2 ) p = |0 + 0 − 1|/√(1/𝑎2 + 1/𝑏2) p = (|−1|)/√(1/𝑎2 + 1/𝑏2) p = 1/√(1/𝑎2 + 1/𝑏2) 1/𝑝 = √(1/𝑎2+1/𝑏2) Squaring both sides (1/𝑝)^2 = (√(1/𝑎2+1/𝑏2))^2 𝟏/𝒑𝟐 = 𝟏/𝒂𝟐 + 𝟏/𝒃𝟐 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo