Slide25.JPG

Slide26.JPG
Slide27.JPG
Slide28.JPG

Go Ad-free

Transcript

Ex10.3, 7 Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3). Let the equation of line AB be 3x – 4y + 2 = 0 & let point P be P(–2, 3) Let line CD be parallel to line AB & passing through the point P(–2,3) We have to find the equation of line CD We know that if two lines are parallel then their slopes are equal , Since line CD is parallel to line AB Thus, Slope of line CD = Slope of line AB Finding slope of line AB 3x − 4y + 2 = 0 3x + 2 = 4y (3𝑥 + 2)/4 = y (3/4)x + 2/4 = y (3/4)x + 1/2 = y y = (3/4)x + 2/4 This equation is of the form y = mx + c where m is the slope, Thus, Slope of line AB = 3/4 Now, from (1) Slope of line CD = Slope of line AB ∴ Slope of line CD = 3/4 Equation of a line passing through a point (x0, y0) & having slope m is (y – y0)= m(x – x0) Equation of a line CD passing through point P(-2,3) & having slope 3/4 is (y – y0)= m(x – x0) Putting values (y − 3) = 3/4(x – (–2)) (y − 3) = 3/4(x + 2) 4(y − 3) = 3 (x + 2) 4y − 12 = 3x + 6 − 12 − 6 = 3x − 4y 3x − 4y = − 12 − 6 3x − 4y = − 18 3x + 4y + 18 = 0 Thus, the required equation of line is 3x + 4y + 18 = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo