Question 12 - Miscellaneous - Chapter 8 Class 11 Sequences and Series
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5
Misc 6
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Misc 11 (i) Important
Misc 11 (ii)
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12 You are here
Question 13 Important
Question 14
Miscellaneous
Last updated at April 16, 2024 by Teachoo
Question 12 If S1, S2, S3 are the sum of first n natural numbers, their squares and their cubes, respectively, show that 9S22 = S3 (1 + 8S1) It is Given that S1 is the sum of n natural numbers i.e. S1 = 1 + 2 + 3 + + n S1 = (n(n+1))/2 S2 is the sum of square of n natural numbers i.e. S2 = 12 + 22 + 32 + n2 S2 = (n(n+1)(2n+1))/6 Also S3 is the sum of their cubes i.e. S3 = 13 + 23 + 33 + n3 S3 = (n(n+1)/2)^2 S3 = n2(n+1)2/4 We need to show that 9S22 = S3 (1 + 8S1) Taking R.H.S S3 (1 + 8S1) = n2(n+1)2/4 ("1 + 8" ((n(n+1))/2)) = n2(n+1)2/4 (1 + 4n(n + 1)) = n2(n+1)2/4 (1 + 4n2 + 4n) = n2(n+1)2/4 ((2n)2 + (1)2 + 2 2n 1) = n2(n+1)2/4 (2n+1)2 = (n(n+1) (2n+1))^2/4 Taking L.H.S 9S22 = 9 ((n(n+1) (2n+1))/6)^2 = 9 ((n(n+1) (2n+1))^2/6^2 ) = 9 (n(n+1) (2n+1))^2/36 = (n(n+1) (2n+1))^2/4 = R.H.S Hence L.H.S = R.H.S Hence proved