Misc 15 - The pth, qth and rth terms of AP are a, b, c - Arithmetic Progression (AP): Calculation based/Proofs

Misc 15 - Chapter 9 Class 11 Sequences and Series - Part 2
Misc 15 - Chapter 9 Class 11 Sequences and Series - Part 3
Misc 15 - Chapter 9 Class 11 Sequences and Series - Part 4
Misc 15 - Chapter 9 Class 11 Sequences and Series - Part 5

Go Ad-free

Transcript

Question 8 The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q r) a+(r p)b+ (p q) c = 0 Here we have small a in the equation, so we use capital A for first term We know that, An = A + (n 1) D where An is the nth term of A.P. n is the number of terms A is the first term, D is the common difference It is given that pth term of an AP is a i.e. Ap = a Putting n = p A + (p 1) D = a a = A + (p 1)D qth term of an AP is b i.e. Aq = b Putting n = q A + (q 1)D = b b = A + (q 1)D rth term of an AP is c i.e. Ar = c Putting n = r A + (r 1)D = c c = A + (r 1)D Now we need to show that (q r)a + (r p)b + (p q)c = 0 We have a = A + (p 1)D Multiplying by (q r) a (q r) = [A + (p 1)D] (q r) a (q r) = [A (q r) + (q r) (p 1)D] And b = [A + (q 1)D] Multiplying by (r p) b (r p) = [A + (q 1)D] (r p) b (r p) = [A (r p) + (q r) (q 1)D] Similarly, c = A + (r 1)D multiply this by (p q) c (p q) = [A + (r 1)D] (p q) c (p q) = [A (p q) + (p q) (r 1)D] We have to prove a (q r) + b (r p) + c (p q) = 0 Taking L.H.S a (q r) + b (r p) + c (p q) From (1), (2) & (3) = "[A (q r) + (q r) (p 1)D] + [A (r p) + (r p) (q 1)D]" "+ [A (p q) + (p q) (r 1)D]" = "A (q r) + A (r p) + A (p q) + (q r) (p 1)D" "+ (r p) (q 1)D + (p q) (r 1)D" = A[q r + r p + p q] + D[(q r) (p 1) + (r p) (q 1) + (p q) (r 1)] = A[p p + r r + q q] + D[q(p 1) r(p 1) + r(q 1) p(q 1) + p(r 1) q(r 1)] = A[0 + 0 + 0] + D[qp q rp + r + rq r pq + p + pr p qr + q] = 0 + D[qp pq + rq qr rp + pr + q q + r r + p p ] = 0 + D[0] = 0 = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo