Example 19 - Find sum of series: 5 + 11 + 19 + 29 + 41 .. - Finding sum from series

Example 19 - Chapter 9 Class 11 Sequences and Series - Part 2
Example 19 - Chapter 9 Class 11 Sequences and Series - Part 3
Example 19 - Chapter 9 Class 11 Sequences and Series - Part 4
Example 19 - Chapter 9 Class 11 Sequences and Series - Part 5

Go Ad-free

Transcript

Question 6, Find the sum to n terms of the series: 5 + 11 + 19 + 29 + 41… It is not an AP or a GP Let Sn = 5 + 11 + 19 + 29 + 41 ... + an–1 + an Sn = 0 + 5 + 11 + 19 + 41 ... + an–2 + an–1 + an Subtracting (2) from (1) Sn – Sn = 5 – 0 + [(11 – 5) + (19 – 11) + (29 – 19) + ...(an–1 – an–2 ) + (an – an – 1)] – an 0 = 5 + [6 + 8 + 10 + 12 + ...an–1 ] – an an = 5 + [6 + 8 + 10 + 12 + ... + (n – 1) terms] 6 + 8 + 10 + 12 + ... + (n – 1) term is an AP With first term a = 6 & common difference = d = 8 – 6 = 2 Sum of n terms of an AP = 𝑛/2 (2a + (n – 1)d) Putting n = n – 1 & a = 6 & d = 2 [6 + 8 + 10 + 12 + ... + (n – 1) terms] = (n−1)/2 [ 2(6) +((n – 1) – 1)2 ] = (n−1)/2 [ 12+(n – 1 – 1)2 ] = (n−1)/2 [ 12+(n – 2)2 ] = (n−1)/2 [12 + 2n – 4] = (n−1)/2 [8 + 2n] = (n−1)/2 × 2[4 + n] = (n – 1) (n + 4) Thus, [6 + 8 + 10+ … upto (n –1) terms] = (n – 1) (n + 4) Now, an = 5 + [6 + 8 + 10 + 12 + ... + (n – 1) terms] Putting values an = 5 + (n – 1)(n – 4) an = 5 + n(n + 4) – 1(n + 4) an = 5 + (n2 + 4n) – n – 4 an = 5 + n2 + 4n – n – 4 an = n2 + 3n + 1 Now = (n(n + 1)(2n + 1))/6 + 3((n(n + 1))/2) + n = (𝑛(n + 1)(2n + 1))/6 + 3/2 n(n + 1) + 𝑛/1 = (𝑛(n + 1)(2n + 1) + 9(n + 1)) + 6n)/6 = n(((n + 1)(2n + 1) + 9(n + 1) + 6)/6) = n((𝑛(2n + 1) + 1(2n + 1) + 9n + 9 + 6)/6) = n ((2n2 + 2n + n + 1 + 9n + 9 + 6)/6) = n((2n2 + 12n + 16)/6) = n((2(n2 +6n +8))/6) = n/3 (n2 + 6n +8) = n/3 [n(n + 4) + 2(n + 4)] = n/3 [(n + 2)(n + 4)] = (n(n + 2)(n + 4) )/3 Thus, the required sum is (n(n + 2)(n + 4) )/3

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo