Chapter 9 Class 11 Sequences and Series
Question 5 Important
Question 9 Important
Question 15 Important
Question 17
Example 9 Important
Example 10 Important
Ex 8.2, 3 Important
Ex 8.2, 11 Important
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 22 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 9.4.4 Important You are here
Question 7 Important
Question 9 Important
Question 10
Question 9
Question 9 Important
Misc 10 Important
Question 13 Important
Misc 14 Important
Misc 18 Important
Chapter 9 Class 11 Sequences and Series
Last updated at Dec. 16, 2024 by Teachoo
Question 4 Find the sum to n terms of the series 1/(1 2) + 1/(2 3) + 1/(3 4) + nth term of series 1/(1 2) + 1/(2 3) + 1/(3 4) + is 1/( ( + 1)) an = 1/( ( + 1)) = (( + 1) )/( ( + 1)) = (( + 1))/( ( + 1)) /( ( + 1)) = 1/ 1/(( + 1)) Now, an = 1/ 1/(( + 1)) Adding all terms Sn = ("1 " " " 1/2) + (1/2 " " " " 1/3) + (1/3 " " " " 1/4) + +(1/( 1) " " " " 1/ )+ (1/ " " " " 1/( + 1)) Sn = 1 1/2 + 1/2 1/3 + 1/3 1/4 + + 1/( 1) " " " " 1/ + 1/ 1/( + 1) Sn = 1 1/( + 1) Sn = (( + 1) 1)/( + 1) Sn = ( + 1 1)/( + 1) Sn = ( + 0)/( + 1) Sn = /( + 1) Thus, the required sum is /( + 1)