Slide75.JPG

Slide76.JPG
Slide77.JPG
Slide78.JPG

Go Ad-free

Transcript

Ex 8.2, 17 If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P. We know that an = arn 1 where an = nth term of GP n is the number of terms a is the first term r is the common ratio Here, 4th term is x i.e. a4 = x Putting n = 4 in an formula x = ar4 1 x = ar3 Also, 10th term is y i.e. a10 = y Putting n = 10 in an formula y = ar10 1 y = ar9 Also, 16th term is z i.e. a16 = z Putting n = 16 in an formula z = ar16 1 z = ar15 We need to show x, y, z are in GP i.e. we need to show / = / Calculating / / Putting y = ar9 & x = ar3 = 9/ 3 = r9 3 = r6 Now calculating / / putting z = ar15 & y = ar9 = 15/ 9 = r15 9 = r6 Thus, / = r6 , & / = r6 Hence / = / x, y, z are in G.P Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo