Chapter 9 Class 11 Sequences and Series
Question 5 Important
Question 9 Important
Question 15 Important
Question 17
Example 9 Important
Example 10 Important
Ex 8.2, 3 Important
Ex 8.2, 11 Important You are here
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 22 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 9.4.4 Important
Question 7 Important
Question 9 Important
Question 10
Question 9
Question 9 Important
Misc 10 Important
Question 13 Important
Misc 14 Important
Misc 18 Important
Chapter 9 Class 11 Sequences and Series
Last updated at Dec. 16, 2024 by Teachoo
Ex9.3, 11 Introduction (2 + 3k) At k = 1, 2 + 31 At k = 2, 2 + 32 .. … …. At k = 11, 2 + 311 Ex9.3, 11 We calculate (31 + 32 + 33 + … + 311) separately In 31 + 32 + 33 + … + 311 32/31 = 3 & 33/32 = 3 Thus, (𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚)/(𝐹𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚) = (𝑇ℎ𝑖𝑟𝑑 𝑡𝑒𝑟𝑚)/(𝑆𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚) i.e. common ratio is same Thus, it is a G.P. First term = a = 3 Common ratio = 3^2/3^1 = 3 Since, r > 1 ∴ Sn = (𝑎(𝑟^𝑛 − 1))/(𝑟 − 1) where Sn = sum of n terms of GP n is the number of terms a is the first term & r is the common ratio ∴ Sn = (𝑎(𝑟^𝑛 − 1))/(𝑟 − 1) Putting values a = 3 , r = 3, n = 11 S11 = (3[311−1])/(3 − 1) S11 =(3[311−1])/2 Hence 31 + 32 + … + 311 = (3[311−1])/2 From (1) Putting 31 + 32 + … + 311 = (3[311−1])/2 = 22 + (3(311 − 1))/2 =22 + 3/2(311 −1) Therefore,