Ex 8.2
Ex 8.2, 2
Ex 8.2, 3 Important
Ex 8.2, 4
Ex 8.2, 5 (a)
Ex 8.2, 5 (b) Important
Ex 8.2, 5 (c)
Ex 8.2, 6
Ex 8.2, 7 Important
Ex 8.2, 8 You are here
Ex 8.2, 9 Important
Ex 8.2, 10
Ex 8.2, 11 Important
Ex 8.2, 12
Ex 8.2, 13
Ex 8.2, 14 Important
Ex 8.2, 15
Ex 8.2, 16 Important
Ex 8.2, 17 Important
Ex 8.2, 18 Important
Ex 8.2, 19
Ex 8.2, 20
Ex 8.2, 21
Ex 8.2, 22 Important
Ex 8.2, 23 Important
Ex 8.2, 24
Ex 8.2, 25
Ex 8.2, 26 Important
Ex 8.2, 27 Important
Ex 8.2, 28
Ex 8.2, 29 Important
Ex 8.2, 30 Important
Ex 8.2, 31
Ex 8.2, 32 Important
Last updated at April 16, 2024 by Teachoo
Ex 8.2, 8 Find the sum to n terms in the geometric progression 7 , 21 ,3 7 7 , 21 ,3 7 Here, First term a = 7 Common ratio r = 21/ 7 = (7 3)/ 7 = ( 7 3 )/ 7 = 3 So r = 3 1.73 Since, r > 1 Sn = ( ( ^ 1))/( 1) Sn = ( ( ^ 1))/( 1) where Sn = sum of n terms of GP n is the number of terms a is the first term r is the common ratio Now, Sum of n terms = ( ( ^ 1))/( 1) Putting values a = 7 , r = 3 Sn = ( 7 (( 3)^ 1))/( 3 1) Rationalizing the same = ( 7 (( 3)n 1 )])/( 3 1) x ( 3 + 1)/( 3 + 1) = ( 7 ( 3 1) ( 3+ 1))/(( 3 1) ( 3+ 1)) = ( 7 ( 3 1) ( 3+ 1))/(( 3 1) ( 3+ 1)) Using a2 b2 = (a + b)(a b) = ( 7 (3^(1/2 ) 1)( 3 +1))/(( 3)2 1^2 ) =( 7 (3^( /2) 1) ( 3 + 1))/2 = 7/2( 3+1) (3^( /2) 1) Hence sum of n term is 7/2( 3+1) (3^( /2) 1)